WISCONSIN STATE
ELECTRICAL CODE
Volume No. 1
Electrical and Communication Lines and
Supply Stations
Fifth Edition
Effective August 30, 1944
Except
Orders 13-3856 to 13-3859 inclusive
Orders 13-3881 to 13-3885 inclusive
Effective Dec. 21, 1944
Compiled by
Industrial Commission of Wisconsin
and
Public Service Commission of Wisconsin
Volume No. 1: Electrical and Communication Lines and
Supply Stations.
Contains orders covering the following:
General Requirements, Definitions and Grounding
of Electrical Facilities ..................................... Introduction
Electrical Supply Stations and Substations ............. Part 1
Supply and Communication Lines ....................... Part 2
Operation of Electric and Communication Equip-
ment and Lines ........................................... Part 4
Volume No. 2: Electrical and Communication Equipment
and Wiring and Lightning Protection.
Contains orders covering the following:
General Requirements and Definitions ................. Introduction
Electrical and Communication Equipment and Wir-
ing Including Grounding ............................. Part 3
Protection of Buildings and Structures Against
Lightning ................................................... Part 6
Published and Sold by
BUREAU OF PURCHASES
STATE CAPITOL
MADISON, WISCONSIN
Industrial Commission of Wisconsin

VYTTA WRABETZ
Chairman

HARRY J. BURGZYK
Commissioner

C. L. MILER
Commissioner

HELEN GILL, Secretary

R. MCA. KEOWN, Engineer

John E. Wise, Electrical Engineer

Public Service Commission of Wisconsin

R. W. PETERSON
Chairman

W. F. WHITNEY
Commissioner

LYNN H. ASHLEY
Commissioner

EDWARD T. KAVENY, Secretary

G. P. STEINMETZ, Chief Engineer
C. B. HAYDEN, Acting Chief Engr.

WARREN OAKLEY, Acting Asst. Chief Engineer

Volume No. 1

WISCONSIN STATE ELECTRICAL CODE

The complete code (Volumes 1 & 2) covers the minimum fire and safety requirements for the construction and installation of all electrical, communication, and signal circuits and equipment including radio and lightning rod equipment; and rules to be observed in the operation of electric and communication equipment and lines.

FIFTH EDITION

Effective August 30, 1944

Except:
Orders 18-3850 to 18-3858 inclusive
Orders 19-3881 to 19-3885 inclusive
Effective Dec. 21, 1944

Madison, Wisconsin
TABLE OF CONTENTS

Wisconsin State Electrical Code

Introductory Part Volume 1.—General Requirements, Definitions and Grounding of Electrical Facilities .......................... 1
Introductory Part Volume 2.—General Requirements and Definitions ................................................................. 2

Part 1—Electrical Supply Stations and Substations ......................... 1

Part 2—Supply and Communication Lines .................................. 1

Part 3—Electrical and Communication Equipment and Wiring Including Grounding .............................................................. 2

Part 4—Operation of Electric and Communication Equipment and Lines ........................................................................... 1

Part 6—Protection of Buildings and Structures Against Lightning 2

BEFORE THE

PUBLIC SERVICE COMMISSION OF WISCONSIN

In the Matter of the Revision by the Commission of the Rules and Regulations Governing the Construction, Operation, and Maintenance of Lines and Equipment Owned, Managed, Operated, or Controlled by Every Public Utility and Every Railroad Along or Across any Public Highway or Private Right of Way over which Electrical Energy is Transmitted, or Messages are Transmitted or Conveyed.

ORDER APPROVING ELECTRICAL CODE

WHEREAS a joint investigation has been conducted by the Industrial Commission of Wisconsin and the Public Service Commission of Wisconsin involving the revision of the standards of safe electrical construction and operation; and

WHEREAS all railroads and public utilities under the jurisdiction of this Commission and subject to the requirements of Chapters 195 and 196 of the Statutes have had due notice of the hearing held in connection with the aforesaid investigation; and

WHEREAS as a result of such investigation certain changes in, and additions to, the Wisconsin State Electrical Code have been adopted and promulgated by the Industrial Commission of Wisconsin as their General Orders Nos. 1000 to 1452 and 1600 to 1652 inclusive, effective August 30, 1944, as more particularly shown in said code;

FINDING

The Commission finds:

That the requirements set forth in the order herein made are proper and necessary to be prescribed for the railroads and public utilities of this state.

ORDER

It is therefore ordered:

(1) That all railroads and public utilities subject to the jurisdiction of this Commission and subject to the requirements of Section 196.74 be and are hereby required to observe and conform to the standards of construction, maintenance, and rules of operation as established by the Wisconsin State Electrical Code adopted by the Industrial Commission, which is hereby approved and adopted as an order of this Commission and a copy of which is hereto attached.

(2) This order will supersed and take the place of the order of this Commission with reference to standards for the safe construction and operation of electric systems decided October 15, 1934, and
SUPPLEMENTARY ORDER

WHEREAS the Industrial Commission published orders in the matter of the revision of the Wisconsin State Electrical Code, made effective as of August 30, 1944, and

WHEREAS the Industrial Commission has published the following additional orders: 13-3856, 13-3857, 13-3858, 13-3859, 13-3881, 13-3882, 13-3883, 13-3884, and 13-3885, and

WHEREAS this Commission issued a concurrent order effective as of the same date:

FINDING

That the orders as enumerated should be a part of the Wisconsin State Electrical Code.

ORDER

It is therefore ordered:

That the orders 13-3856 to 13-3859 inclusive and 13-3881 to 13-3885 inclusive are a part of the Wisconsin State Electrical Code adopted August 30, 1944. This supplementary order becomes effective December 21, 1944.

Dated at Madison, Wisconsin, this 21st day of November, 1944.

PUBLIC SERVICE COMMISSION OF WISCONSIN

R. W. Peterson
Chairman
W. F. Whitney
Commissioner
LYNN H. Ashley
Commissioner

WISCONSIN STATE ELECTRICAL CODE

Preface

By Chapter 101 of the revised statutes, it is the duty of the Industrial Commission to fix standards of safety in all places of employment and to formulate rules and regulations relative to the enforcement of such standards. It is further the duty of the Industrial Commission to fix similar standards and formulate rules and regulations relating to fire hazards or to the prevention of fire in buildings so situated as to endanger other buildings or property.

The first electrical code was adopted in 1917. Between 1917 and the present date, the 1917 code orders were revised and changed a number of times. The fourth edition of the code became effective October 15, 1934 and changes made which became effective on July 22, 1936; July 25, 1936; and September 7, 1940. Later it became apparent that further revisions in the electrical code were necessary.

On September 26, 1942 an emergency amendment became effective as Order 1001 permitting the regulatory authorities to approve substitute wiring materials and methods during the war emergency and for a period six months thereafter. Changes under this emergency amendment were approved November 16, 1942 and January 13, 1943.

The following committee representing the organizations noted, together with the advisors given below, met with representatives of the Industrial and Public Service Commission at various times during 1941, 1942, and 1943.

CODE COMMITTEE

C. B. Hayden, Madison, Chairman of Committee, Public Service Commission of Wisconsin
John E. Wise, Madison, Secretary of Committee, Industrial Commission of Wisconsin
G. H. Andrae, Milwaukee, Wisconsin Electrical Association
E. J. Kalleway, Madison, Wisconsin Utilities Association
J. B. Wilkinson, Milwaukee, Fire Insurance Rating Bureau
F. H. Runke, Madison, State Telephone Association
W. C. Lallier, Milwaukee, Wisconsin Telephone Company
E. W. Seeber, Milwaukee, Electrical Utilization Equipment Manufacturers
L. A. Wood, Chicago, C. B. and Q. Railroad
Wm. A. Haig, Milwaukee, Milwaukee Building Inspection Department
B. H. Baig, Milwaukee, Electrical Contractors Association, Milwaukee Chapter
T. J. Daly, Milwaukee, Wisconsin State Federation of Labor
George E. Cooper, West Allis, Wisconsin Manufacturers Association
The persons consulted as technical advisers were as follows:
V. H. Touley, Chicago, Electric Field Engineer, National Fire Protection Association
C. B. Robertson, Milwaukee, Wisconsin Telephone Company
W. S. Wilder, Milwaukee, Wisconsin Electric Power Company
George Crowell, Milwaukee, Chief Engineer, Wisconsin Telephone Company
C. T. Reinz, Chicago, Western Union Telegraph Company
W. E. Gundlach, Milwaukee, Chief Electrical Engineer, Wisconsin Electric Power Company
A. L. St. Cyr, Chicago, Western Union Telegraph Company
E. H. Herzberg, Milwaukee, Manager, Electrical Contractors Association, Milwaukee Chapter
Walter Gerke, Milwaukee, Wisconsin State Federation of Labor
L. P. Works, Green Bay, Wisconsin Public Service Corporation
R. E. Purerker, Madison, Wisconsin Public Service Commission

Because some interests use certain parts of the code to the exclusion of others and the revision of some parts occurs more frequently than others it was deemed advisable to separate the code into two volumes. When reference is made to the Wisconsin State Electrical Code the complete code (both volumes) is meant.

The formal hearings were held at Madison on September 8, 1943; at Milwaukee on September 10, 1943; at Eau Claire on September 21, 1943; at Wausau on September 22, 1943; and at Green Bay on September 24, 1943 at which time the committee made a report to the two Commissions. After fully considering the committee’s recommendations, the attached code was adopted by the Industrial Commission. The official publication of this action of the Industrial Commission took place in the official state paper on July 31, 1944 and hence became effective thirty days later; namely, August 30, 1944. The Public Service Commission’s order became effective as of the same date.

Orders 13-3856 to 13-3859 inclusive and 13-3881 to 13-3885 inclusive were published November 21, 1944, and hence became effective December 21, 1944.

LOCAL ELECTRICAL REGULATIONS

Section 101.16 subsection 1 of the statutes provides that when any orders of the Industrial Commission have been filed with the clerk of any village or city it then becomes the duty of the local officers to enforce such orders and thereafter no local officer shall make or enforce any order contrary to such orders.

However, nothing in this Electrical Code shall be understood to limit the power of any town, village or city to enact and enforce additional or more stringent local regulations, provided the same do not abridge or conflict with this code or any other orders of the Industrial Commission. The State Electrical Code sets forth the minimum construction requirements for the entire state, but where local regulations are more stringent, in whole or in part, the additional local requirements must also be met.

Less stringent local regulations are held to be amended or modified by similar orders of the Industrial Commission.

Statutes Affecting Interior Wiring, Transmission Lines, etc.

Section 167.16 of the Statutes requires the following regarding electric wiring.

Regulation of Electric Wiring. 167.16(1) It is hereby made the duty of every contractor and other person who does any electric wiring in this state to comply with the Wisconsin State Electrical Code, and the company furnishing the electrical current shall obtain proof of such compliance before furnishing such service; provided, that nothing therein contained shall be construed as prohibiting any municipality from making more stringent regulations than those contained in the above mentioned code. Proof of such compliance shall consist of a certificate furnished by a municipal or other recognized inspection department or officer, or if there is no such inspection department or officer it shall consist of an affidavit furnished by the contractor or other person doing the wiring, indicating that there has been such compliance.

(2) Any person who shall violate the provisions of this section shall be deemed guilty of a misdemeanor and shall be punished by a fine of not less than twenty-five dollars nor more than one hundred dollars, or by imprisonment in the county jail not less than thirty days nor more than six months.

The following forms of affidavit, one form for the contractor and one for the electrical inspector, are suggested:

SUGGESTED FORM OF AFFIDAVIT TO BE USED BY ELECTRICAL INSPECTOR

State of Wisconsin
__________________________ County
City _____________ ss
Village _____________
Town __________________

I, _____________________, do hereby certify that I am the duly appointed, qualified and acting electrical inspector of said city, village or town; that I have inspected the following described electric wiring installed by __________________________, on the premises occupied by __________________________, and located at No. ___________ Street, in said city, village or town, and that said wiring complies with the Wisconsin State Electrical Code. Description of wiring inspected,

Dated __________________________, 19_________

________________________________________
Electrical Inspector
SUGGESTED FORM OF AFFIDAVIT TO BE USED BY ELECTRICAL CONTRACTOR

STATE OF WISCONSIN

County of __________________

____________________________, being duly sworn by oath, says that he is the person who __________________ the following described work of wiring for electricity in the ________________ occupied by __________________, and located __________________ in the County of ________________, Wisconsin, and that all of said described electric wiring at the location above was done so as to comply, and does comply, with the Wisconsin State Electrical Code, and that this affidavit is made pursuant to and in compliance with the provisions of section 167.16 of the Statutes.

Description of wiring done ____________________________

_________________________________________

(Signed) __________________________

Subscribed and sworn to before me, this _____ day of ____________, 19____

________________________________________

Notary Public, ______________ County, Wis.

The administrative authorities have considered the term "electric wiring" in the above as applying to all wiring installed on customer's premises to supply equipment with energy, except wiring used in Class 1 or Class 2 systems as defined in Order 13-5002.

Section 196.72(1) of the Statutes requires

(1) Every public utility shall immediately report to the Commission (I.e. Public Service Commission) every fatal accident occurring upon its premises or directly or indirectly arising from or connected with its maintenance or operation.

Section 102.37 of the Statutes requires

Every employer of three or more persons and every employer who is subject to the workmen's compensation act shall keep a record of all accidents causing death or disability of any employee while performing services growing out of and incidental to the employment, which record shall give the name, address, age and wages of deceased or injured employees, the time and causes of the accident, the nature and extent of the injury, and such other information as the Industrial Commission may require by general order. Reports based upon this record shall be furnished to the Industrial Commission at such times and in such manner as it may require by general order upon forms to be procured from the Commission (I.e. Industrial Commission).

In connection with Section 102.37 of the statutes quoted above, the Industrial Commission has issued the following rule 2 of its "Rules of Practice of Industrial Commission of Wisconsin."

*Space left for the word "did" or "supervised." **Specify residence, barn or other building in which wiring was done. ***In villages and cities insert street and number and name of city or village. In unincorporated territory insert section number and name of town.

Employers under the provisions of the workmen's compensation act within one day after the fatal termination of an accident or industrial disease, shall make a brief report of this occurrence to the Industrial Commission by telegraph or by letter. They shall also make a report on Form A-12 on the fourth day after the accident or beginning of disability from occupational disease upon every accident or disease causing death or a disability which exists beyond the third day after the employee leaves work as a result of the accident.

Self-insured employers and insurance companies on all accidents which require a first report must:

1. Make a supplementary report on Form A-13 on the eleventh day following that on which the accident occurred.
2. Make another supplementary report immediately when payments are stopped for any reason. This report must be accompanied by an explanatory memorandum, if there is a dispute with the injured man.
3. Make a final report on Form A-13 when final payment of compensation has been made, which must be accompanied by (a) a copy of the final receipt signed by the injured employee; and (b) a report from a physician, if the disability exceeds three weeks or if there is any permanent disability, unless there has been a hearing before the Commission.

Some of the other laws that have a bearing on electric construction and safety are as follows:

<table>
<thead>
<tr>
<th>Section or Chapter</th>
<th>Subject Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laws of 1942</td>
<td></td>
</tr>
<tr>
<td>Chapter 101</td>
<td>Creation and duties of Industrial Commission</td>
</tr>
<tr>
<td>Chapter 102</td>
<td>Workmen's compensation act</td>
</tr>
<tr>
<td>Chapters 195 and 196</td>
<td>Creation and duties of Public Service Commission</td>
</tr>
<tr>
<td>Section 96.16</td>
<td>Poles on highways</td>
</tr>
<tr>
<td>Section 190.17</td>
<td>Transmission lines</td>
</tr>
<tr>
<td>Section 180.18</td>
<td>Wires over railroads</td>
</tr>
<tr>
<td>Section 196.171</td>
<td>Examination of meters, pipes, fittings, wires and works; entering buildings for</td>
</tr>
<tr>
<td>Section 180.19</td>
<td>Damages for non-delivery of messages</td>
</tr>
<tr>
<td>Section 196.67</td>
<td>Transmission lines and warning signs</td>
</tr>
<tr>
<td>Section 196.74</td>
<td>Safety and interference</td>
</tr>
<tr>
<td>Sections 343.17 and 98.25</td>
<td>Diversion of current</td>
</tr>
<tr>
<td>Section 343.175</td>
<td>Fraudulent use of gas, electricity, water and steam</td>
</tr>
<tr>
<td>Section 343.724</td>
<td>Poles on private property</td>
</tr>
<tr>
<td>Section 343.43</td>
<td>Injury to property</td>
</tr>
<tr>
<td>Section 348.38</td>
<td>Injury to wires</td>
</tr>
</tbody>
</table>

The above is not a complete list of laws covering all the subject matter involved nor all the laws administered by the Public Service Commission and Industrial Commission.
Other Industrial Commission Publications

Flammable Liquids Code
Building Code
Elevator Code
Boiler Code
Industrial Lighting Code
School Lighting Code
Refrigerator Code
Heating and Ventilating Code
General Orders on Existing Buildings
General Orders on Dusts, Fumes, Vapors and Gases
General Orders on Safety in Construction
General Orders on Fire Prevention
General Orders on Sanitation
General Orders on Safety
General Orders on Spray Coating
General Orders on Quarries and Pits
General Orders on Mines
General Orders on Tunnel, Caisson and Trench Construction
General Orders on Explosives
General Orders on Electrical Fences

Enforcement

The authority for the enforcement of this code is vested in the Public Service Commission with respect to the installation and operation of circuits or equipment by public utilities in the exercise of their functions as utilities; and in the Industrial Commission with respect to the installation and operation of circuits or equipment affecting employees, employers, or the public.

INTRODUCTORY PART
VOLUME NO. 1
GENERAL REQUIREMENTS, DEFINITIONS AND GROUNDING OF ELECTRICAL FACILITIES

Order 1000. Scope of Code.
This code, consisting of two volumes, shall apply as minimum fire and safety requirements for the construction, installation, and maintenance of all electrical and communication circuits and equipment including signal, radio, and lightning rod equipment; and includes rules to be observed in the operation of electrical and communication equipment and lines.

Order 1001. Emergency Amendment.
The Industrial Commission of Wisconsin and the Public Service Commission of Wisconsin, recognizing the present war emergency and the shortages of critical materials, hereby amend the Wisconsin State Electrical Code to permit the use of approved substitute electrical wiring materials and methods.

Lists of such approved substitute materials and methods shall, upon recommendation of a subcommittee of the Wisconsin State Electrical Code Advisory Committee, be issued by the Industrial Commission or the Public Service Commission from time to time as may be necessary and as promptly as possible.

This amendment is to remain in effect during the war emergency and for a period of 6 months thereafter, unless otherwise amended or repealed.

This amendment was published in the official state paper on August 27, 1942 and became effective September 26, 1942.

SECTION 101. GENERAL REQUIREMENTS

Order 1010. Character of Construction, Maintenance, and Operation.
All electrical and communication equipment and lines shall be of such construction, and so installed, operated, and maintained as to minimize the life and fire hazard.

Order 1011. Use of Approved Materials and Construction Methods.
A. Materials. No materials, employed in construction covered by this code, shall be used which have not been approved by the Industrial Commission or Public Service Commission.

Exception: Materials which comply with the requirements of this code are hereby approved.

Note: It is the policy of the administrative authority to approve materials, devices, and systems which are listed as standard by the Underwriters' Laboratories if they do not conflict with the requirements of this or other state codes or the laws of the state.
B. Methods of Installation. No methods of installing electrical materials or devices in construction covered by this code shall be used which are not approved by the Industrial Commission or Public Service Commission.

Exception: Methods of installation which comply with the requirements of this code are hereby approved.

Order 1012. Construction Inspection and Repairs.

All construction and equipment shall be cleaned when necessary and inspected at such intervals as experience has shown to be necessary. Any equipment or construction known to be defective so as to endanger life or property shall be promptly repaired, permanently disconnected, or isolated until repairs can be made. Construction repairs, additions and changes to electrical equipment and conductors shall be made by qualified persons only. (See also Orders 1211 and 1213)


A. Waiving Orders. The orders are intended to apply to all installations except as modified or waived by the proper administrative authority. They are intended to be so modified or waived in particular cases wherever any rules are shown for any reason to be impracticable, such as by involving expense not justified by the protection secured; or if equivalent or safer construction is secured in other ways.

B. Application. The intent of the orders will be realized (1) by applying the orders in full to all new installations, reconstructions, alterations and extensions, except where any order is shown to be impracticable for special reasons or where the advantage of uniformity with existing construction is greater than the advantage of construction in compliance with the orders, providing the existing construction is reasonably safe; (2) by bringing existing installations into conformity with these orders as far as may be directed by the Industrial Commission or Public Service Commission and within the time determined by them.

C. Penalties. The 1943 statutes of the State of Wisconsin require

102.57 Where injury is caused by the failure of the employer to comply with any statute or any lawful order of the Commission, (i.e. Industrial Commission) compensation and death benefits as provided for in this chapter shall be increased fifteen percent.

102.58 Where injury is caused by the failure of the employer to use safety devices where provided and adequately maintained by the employer, or where injury results from the employee's willful failure to obey any reasonable rule adopted by the employer for the safety of the employee and of which the employee had notice, or where injury results from the intoxication of the employee, the compensation, and death benefits provided herein shall be reduced fifteen percent.

196.84 Utilities, liability for treble damages. If any public utility shall do or cause to be done or permit to be done any matter, act or thing prohibited or declared to be unlawful by chapter 196 or 197, or shall omit to do any act, matter or thing required to be done by it, such public utility shall be liable to the person injured thereby in treble the amount of damages sustained in consequence of such violation.

196.66 General penalty; utility responsible for agents, (1) If any public utility shall violate any provision of chapter 196 or 197, or shall do any act therein prohibited or shall fail or refuse to perform any duty enjoined upon it for which a penalty has not been provided, or shall fail, neglect or refuse to obey any lawful requirement or order made by the commission (i.e. Public Service Commission) or the municipal council or any judgment or decree made by any court upon its application, for every such violation, failure or refusal such public utility shall forfeit not less than twenty-five dollars nor more than one thousand dollars.

(2) Every day during which any public utility or any officer, agent or employee thereof shall fail to observe and comply with any order or direction of the commission or to perform any duty enjoined by chapter 196 or 197, shall constitute a separate and distinct violation.

D. Temporary Installations. It will sometimes be necessary to modify or waive certain of the orders in case of temporary installations or installations which are shortly to be dismantled or reconstructed. Such temporary construction may be used for a reasonable length of time provided it is under competent supervision while it or adjoining equipment is alive or if it is protected by suitable barriers or warning signs when accessible to any person, without fully complying with this code; but all such construction shall be made reasonably safe.

E. Testing. Rooms which are used exclusively for routine or special electrical test work and, therefore, are under the supervision of a qualified person, need comply with this code only in so far as is practicable for the character of the testing done.

F. Emergency. In case of emergency or pending decision of the administrator, the person responsible for the installation may decide as to modification or waiver of any order, subject to review by proper authority.

SECTION 102. DEFINITIONS OF SPECIAL TERMS

Order 1020. Definitions.

The following is a list of terms which it was deemed advisable to define. Terms defined only in Volume 2 are indicated. Terms not defined will be understood to have their customary meaning.

(1) Accessible. See Volume 2.

(2) Administrative Authority means the Industrial and/or the Public Service Commissions.

(3) Adjustable Speed Motor. See Volume 2.

(4) Alive or Live means electrically connected to a source of potential difference, or electrically charged so as to have a potential dif-
(D) Line Conductor means one of the wires or cables carrying electric current, supported by poles, towers, or other structures, but not including vertical or lateral connecting wires.

(E) Vertical Conductor means, in pole wiring work, a wire or cable extending in an approximately vertical direction.

(24) Conductor Conflict. See Conflict.

(25) (A) Conduit means a tube or duct especially constructed for the purpose of enclosing electrical conductors.

(B) Rigid Steel Conduit means a tubular raceway with threaded ends, for electric wires and cables, having a corrosion resistant coating on all surfaces, except threads, and a uniformly smooth interior coating of enamel or like material, made of mild steel pipe of circular cross section, having walls which in the various electrical trade sizes comply with the measurements and weights set forth in Order 13-93481.

(C) Flexible Metallic Conduit means a flexible raceway of circular cross section especially constructed for the purpose of permitting drawing in or withdrawing of wires and cables after the conduit and its fittings are in place, and is made of metal strip, usually of steel with metallic corrosion resistant coating, helically wound and with interlocking edges.


(A) Antenna Conflict means that an antenna or its guy wire is at a higher level than a supply or communication conductor and approximately parallel thereto, provided the breaking of the antenna or its support will be likely to result in contact between the antenna or guy wire and the supply or communication conductors.

(B) Conductor Conflict means that a conductor is so situated with respect to a conductor of another line at a lower level that the horizontal distance between them is less than the sum of the following values:

(a) Five feet, plus

(b) One-half the difference of level between the conductors concerned, plus

(c) The value required in Tables 6, 7, and 8 of Order 1235 for horizontal separation between conductors on the same support for the highest voltage carried by either conductor concerned.

(C) Structure Conflict (as applied to a pole line) means that the line is so situated with respect to a second line that the overturning (at the ground line) of the first line will result in contact between its poles or conductors and the conductors of the second line, assuming that no conductors are broken in either line.

Exceptions: Lines are not considered as conflicting under the following conditions:

(1) Where one line crosses another.

(2) Where two lines are on opposite sides of a highway, street or alley and are separated by a distance not less than 60 percent of the height of the taller pole and not less than 20 feet.
(29) Current-carrying Part means a conducting part intended to be connected in an electric circuit. Non-current-carrying parts are those not intended to be so connected.
(30) Cutout Box. See Volume 2.
(31) Dead means free from any electrical connection to a source of potential difference and from electric charge; not having a potential different from that of the earth. The term is used only with reference to current-carrying parts which are sometimes alive.
(32) Demand Factor. See Volume 2.
(33) Device means a unit of an electrical wiring system which is intended to carry but not consume electrical energy.
(34) Disconnect means a switch which is intended to open a circuit after the load has been thrown off by some other means.

Note: Manual switches designed for opening loaded circuits are usually installed in circuits with disconnectors to provide a safe means for opening the circuit under load.
(35) Duct means (in underground work) a single tubular runway for underground cables.
(36) Dustproof. See Volume 2.
(37) Dusttight. See Volume 2.
(38) Duty. See Volume 2.
(39) Effectively Grounded. See Grounded.
(40) Electrical Metallic Tubing. See Conduit.
(41) Electrical Supply Equipment. See Equipment.
(42) Electrical Supply Lines. See Lines.
(43) Electrical Supply Station means any building, room, or separate space within which electrical supply equipment is located and the interior of which is accessible, as a rule, only to properly qualified persons.

This includes generating stations and substations and generator, storage battery, and transformer rooms, but excludes manholes and isolated transformer vaults on private premises. (See definition of "transformer vault")
(44) Electric Sign. See Volume 2.
(45) Enclosed means surrounded by a case which will prevent accidental contact of a person with live parts. A solid enclosure means one which will neither admit accumulation of flying or dust nor permit spark or arcing particles to the accumulations outside.
(46) Equipment means a general term including fittings, devices, appliances, fixtures, apparatus, and the like, used as a part of, or in connection with, an electric installation.
(47) Electrical Supply Equipment means equipment which produces, modifies, regulates, controls, or safeguards a supply of electrical energy.
(48) Utilization Equipment means equipment, devices, and connected wiring, which utilize electrical energy for mechanical, chemical, heating, lighting, testing, or similar purposes and are not a part of supply equipment, supply lines or communication lines.
(49) Explosion-proof means enclosed in a case which is designed and constructed to withstand an explosion of a specified gas or dust which may occur within it, and to prevent the ignition of the specified gas or dust surrounding the enclosure, by sparks, flashes or explosions of the specified gas or dust which may occur within the enclosure.
(50) Exposed (A) (applied to circuits or lines) means in such a position that in case of failure of supports or insulation contact with another circuit or line may result.
(B) Exposed (applied to equipment) means that an object or device can be inadvertently touched or approached nearer than a safe distance by any person. It is applied to objects not suitably guarded or isolated.
(51) Externally Operable means capable of being operated without exposing the operator to contact with live parts. (This term is applied to equipment, such as a switch, that is enclosed in a case or a cabinet)
(52) Factory Yard. See Volume 2.
(53) Feeder. See Volume 2.
(54) Fitting. See Volume 2.
(55) Flexible Metallic Tubing. See Conduit.
(56) Garage. See Volume 2.
(58) (A) Grounded means connected to earth or to some extended conducting body which serves instead of the earth, whether the connection is intentional or accidental.
(B) Effectively Grounded means permanently connected to earth through a ground connection of sufficiently low impedance and having sufficient current-carrying capacity to prevent the building up of voltages which may result in undue hazard to connected equipment or to persons.
(C) Grounded Systems means a system of conductors in which at least one conductor or point (usually the middle wire, or neutral point of transformer or generator windings) is intentionally grounded, either solidly or through a current limiting device. This ground connection may be at one or more points.
(60) Guarded means covered, shielded, enclosed, or otherwise protected, by means of suitable covers, casings, barrier rails or screens, or by means of mats, or platforms, to remove the liability of dangerous contact or approach by persons or objects to a point of danger. Wires, which are insulated, but not otherwise protected, are not considered as guarded. (See Definition of Insulated)
(61) Guard Zone means the space at minimum clearance from guards to electrical parts where guards may be installed by workmen without definite engineering design. (See Order 1124)
(60) **Handhole** means an opening in an underground system into which workmen reach but do not enter.

(61) **Hazardous.** See Volume 2.

(62) **Hole.** See Volume 2.

(63) **Inclosed.** See Enclosed.

(64) **Insulated** means separated from other conducting surfaces by a dielectric substance or air space permanently offering a high resistance to the passage of current and to disruptive discharge through the substance or space.

Note: When any object is said to be insulated, it is understood to be insulated in a suitable manner for the conditions to which it is subjected. Otherwise, it is within the purpose of these rules, uninsulated. Insulating covering of conductors is one means of making the conductors insulated.

(65) **Insulating** (where applied to the covering of a conductor or to clothing, guards, rods, and other safety devices) means that a device, when interposed between a person and current-carrying parts, protects the person making use of it against electric shock from the current-carrying parts with which the device is intended to be used. (The opposite of conducting.)

(66) **Isolated** means that an object is not readily accessible to persons unless special means for access are used. (See definition of exposed.)

(67) **Isolated Plant** means a private electrical installation deriving energy from its own generator driven by a prime mover.

(68) **Isolating Switch.** See Switch. Volume 2.

(69) **Isolation by Elevation** means elevated sufficiently so that persons may safely walk underneath. (See definition of exposed)

(70) **Joint Use** means simultaneous use by two or more kinds of utilities.

(71) **Lateral Conductor.** See Conductor.

(72) **Lateral Working Space** means the space reserved for working between conductor levels outside the climbing space, and to its right and left.

(73) **Lighting Outlet.** See Volume 2.

(74) **Lightning Arrester** as applied to supply circuits means a device which has the property of reducing the voltage of a surge applied to its terminals, is capable of interrupting follow current if present, and restores itself to its original operating condition.

(75) **Line Conductor.** See Conductor.

(76) **Lines.**

(A) **Communication Lines** means the conductors and their supporting or containing structures which are located outside of buildings and are used for public or private signal or communication service and which operate at not exceeding 400 volts to ground or 760 volts between any two points of the circuit, and the transmitted power of which does not exceed 150 watts. When operating at less than 150 volts no limit is placed on the capacity of the system.

Telephone, telegraph, railroad-signal, messenger-call, clock, fire or police alarm, and other systems conforming with the above are included.

Lines used for signaling purposes, but not included under the above definition are considered as supply lines of the same voltage and are to be so run.

Exception is made under certain conditions for communication circuits used in the operation of supply lines. (See Order 1984A.)

(B) **Minor Communication Lines** means communication lines carrying not more than two circuits used mainly for local telephone or telegraph service, or for police or fire alarm service.

(C) **Electrical Supply Lines** means those conductors and their necessary supporting or containing structures which are located entirely outside of buildings and are used for transmitting a supply of electrical energy. Electrical supply lines do not include communication lines as defined in (A) above.

Does not include open wiring on buildings in yards or similar locations where spans are less than 20 feet and all the precautions required for stations or utilization equipment, as the case may be, are observed.

Railway-signal lines of more than 400 volts to ground are always supply lines within the meaning of these rules, and those of less than 400 volts may be considered as supply lines, if so run and operated throughout.

(77) **Location.** See Volume 2.

(78) **Low-voltage Protection** means the effect of a device operative on the reduction or failure of voltage to cause and maintain the interruption of power supply to the equipment protected.

(79) **Low-voltage Release** means the effect of a device operative on the reduction or failure of voltage to cause the interruption of power supply to the equipment, but not preventing the reestablishment of the power supply on return of voltage.

(80) **Manhole.** (More accurately termed splicing chamber or cable vault) means an opening in an underground system which workmen or others may enter for the purpose of installing cables, transformers, junction boxes, and other devices, and for making connections and tests.

(81) **Manual** means capable of being operated by personal intervention.

(82) **Master Service.** See Volume 2.

(83) **Minor Communication Lines.** See Lines.

(84) **Motion Picture Studio.** See Volume 2.

(85) **Motor Circuit Switch.** See Volume 2.

(86) **Movable Equipment.** See Volume 2.

(87) **Multi-outlet Assembly.** See Volume 2.

(88) **New Construction** means all new electrical installations and all extensions and renewals which constitute a substantial portion of the installation.
(89) Open Wire means a conductor or pair of conductors separately supported above the surface of the ground.

(90) Outlet. See Volume 2.

(91) Outside Lighting. See Volume 2.

(92) Panelboard means a single panel, or group of panel units designed for assembly in the form of a single panel, including busses and with or without switches and/or automatic overload protective devices for the control of light, heat, or power circuits of small individual as well as aggregate capacity designed to be placed in a cabinet or cutout box placed in or against wall, or partition, and accessible only from the front. (See definition of Switchboard)

(93) Permanently Grounded. See grounded, effectively.

(94) Pole Face means that side of a pole on which cross arms are attached, or which is so designated by the companies owning or operating the pole.

(95) Portable Appliance. See Volume 2.

(96) Qualified means familiar with the construction and operation of the apparatus and the hazards involved. Responsibility for the decision as to the qualifications of the employees rests with the employer or his agent.

(97) Raceway means any channel for loosely holding wires or cables in interior work, which is designed expressly and used solely for this purpose. Raceways may be of metal, wood, or insulating material, and the term includes wood and metal moldings consisting of a backing and capping, and also metal ducts into which wires are to be pulled.

(98) Raintight. See Volume 2.

(99) (A) Rating (Of fuse) See Volume 2.

       (B) Rating (Of circuit breaker) See Volume 2.

(100) Readily Accessible. See Volume 2.


(102) Reconstruction means replacement of a substantial portion of an existing installation by new equipment or construction. Does not include ordinary maintenance replacements.

(103) Rural Districts means all places not urban, usually in the country, but in some cases within city limits. (See definition of Urban Districts)

(104) Sag.

       (A) Apparent Sag at Any Point means the departure of the wire at the particular point in the span from the straight line between the two points of support of the span, at 60°F, with no wind.

       (B) Apparent Sag of a Span means the maximum departure of the wire in a given span from the straight line between the two points of support of the span, at 60°F, with no wind loading.

       (C) Final Unloaded Sag means the sag of a conductor after it has been subjected for an appreciable period to the loading prescribed, or equivalent loading, and the loading removed.

       (D) Initial Unloaded Sag means the sag of a conductor prior to the application of any external load.

(105) Sealable Equipment. See Volume 2.

(106) Service. (A) Service means the conductors and equipment for delivering electric energy from the secondary distribution or street main or other distribution feeder, or from the transformer, to the wiring system of the premises served.

       (B) Service Cable means conductors made up in the form of a cable.

       (C) Service Conductors means that portion of the supply conductors which extends from the street main or duct or from transformers to the service equipment of the building supplied.

       (D) Service Drop means that portion of overhead service conductors between the pole and the first point of attachment to the building.

       (E) Service Entrance Conductors means that portion of service conductors between the terminals of service equipment and a point outside the building, clear of building walls, where joined by tap or splice to the service drop or to street mains or other source of supply.

       Where service equipment is located outside the building walls, there may be no service entrance conductors, or they may be entirely outside the building.

       (F) Service Equipment means the necessary equipment, usually consisting of circuit-breaker or switch and fuses, and their accessories, located near point of entrance of supply conductors to a building and intended to constitute the main control and means of cutoff for the supply to that building.

       (G) Service Raceway means the rigid steel conduit or electrical metallic tubing or other raceway that encloses service entrance conductors.

       (H) Service Pipe means conduit or pipe that contains underground service conductors and extends from the junction with outside supply wires into the consumers' premises.

       (107) Shall is used to indicate requirements.

       (108) Should is used to indicate recommendations, or that which is advised but not required. In general, recommendations have the form of fine-print notes or paragraphs supplementing the preceding text.

       (109) Span Length means the horizontal distance between two adjacent supporting points of a conductor.

       (110) Special Permission means the written consent of the Industrial or Public Service Commission.
(111) **Structure Conflict.** See Conflict.

(112) **Substantial** means so constructed and arranged as to be of adequate strength and durability for the service to be performed under the prevailing conditions.

(113) **Switch** means a device for opening or closing or changing the connection of a circuit. In these rules, a switch will always be understood to be manually operated unless otherwise stated. For General-use, Isolating and Motor-circuit Switch, see Volume 2.

(114) **Switchboard** (Supply Station Switchboard) means a large single panel, frame, or assembly of panels, on which are mounted, on the face or back or both, switches, overload and other protective devices, busses, and usually instruments. Switchboards are generally accessible from the rear as well as from the front and are not intended to be installed in cabinets. (See Panelboard)

(115) **Tags** mean tags or other markers of distinctive appearance, indicating that men are at work on the equipment or lines so designated.

(116) **Tension.**

(A) **Final Unloaded Conductor Tension** means the longitudinal tension in a conductor after the conductor has been stretched by the application for an appreciable period, and subsequent release, of the heavy loading of ice and wind, and temperature decrease, specified in these orders. (or equivalent loading)

(B) **Initial Conductor Tension** means the longitudinal tension in a conductor prior to the application of any external load.

(117) **Totally Enclosed Motor.** See Volume 2.

(118) **Transformer Vault** means an isolated fire-resistant enclosure, either above or below ground, in which transformers and related equipment are installed and which is not continuously attended during operation.

(119) **Urban Districts** means thickly settled areas, whether inside city limits or not.

(120) **Utilization Equipment.** See Equipment.

(121) **Vapor-tight.** See Volume 2.

(122) **Ventilated.** See Volume 2.

(123) **Vertical Conductor.** See Conductor.

(124) **Voltage** (of a circuit) means the greatest effective difference of potential between any two conductors of the circuit concerned.

(to ground) In grounded circuits means the voltage between the given conductor and that point or conductor of the circuit which is grounded; in ungrounded circuits, the greatest voltage between the given conductor and any other conductor of the circuit.

Where one circuit is directly connected to another circuit of higher voltage (as in the case of auto transformers) both are considered of the higher voltage, unless the circuit of lower voltage is effectively grounded.

---

**SECTION 103. PROTECTIVE GROUNDING**

**Order 1030. Grounding, General.**

This section (Orders 1030 to 1039 inclusive) treats of protection by grounding of electrical generation, transmission, distribution, and some utilization facilities, the general requirements of which are covered in parts 1, 2, and 4 of this code. The orders in this section do not apply to the grounded return of electric railways, to the grounding of lightning protection wires which are independent of electric circuits and equipment, nor to the grounding of communication circuits and equipment.

In general the orders in this section cover methods of grounding and such requirements that would have to be repeated if placed in the various parts of the code.

Additional orders covering grounding will be found in all parts of the code. In general grounding requirements covering interior wiring will be found in Section 13–200 of part 3, volume 2; the grounding of lightning rods, part 6, volume 2; grounding in connection with radio Section 13–810, part 3, volume 2; and grounding communication and signal systems Order 13–8031, part 3, volume 2.

Insulation, isolation, and guarding are suitable alternatives to grounding under certain conditions.

Circuits are grounded for the purpose of limiting the voltage on the circuit which might otherwise occur through exposure to lightning or other voltages higher than that for which the circuit is designed; or to limit the maximum potential to ground due to normal voltage.

A. Direct Current. 1. Two-wire direct-current systems supplying interior wiring systems and operating at not to exceed 300 volts between conductors shall be grounded on one conductor at one or more supply stations but not at individual services or elsewhere on the interior systems unless such system is used for supplying industrial equipment in limited areas and the circuit is equipped with a ground detector.

It is recommended that two-wire direct-current systems operating at more than 300 volts between conductors be grounded if a neutral point can be established such that the maximum difference of potential between the neutral point and any other point on the system does not exceed 300 volts. It is recommended that two-wire direct-current systems be not grounded if the voltage to ground of either conductor would exceed 300 volts after grounding.

2. Three-wire direct-current systems supplying interior wiring systems shall be grounded on the neutral at one or more supply stations but not at individual services or elsewhere on the interior systems.

B. Alternating Current. 1. Secondary alternating-current distributing systems supplying wiring systems serving utilization equipment and interior alternating-current systems shall be grounded if they can be so grounded that the maximum voltage to ground does not exceed 500 volts.

2. In alternating-current distribution systems ground connections shall be made at the building service and near the transformer (or transformers) either by direct ground connection through an extended water piping system or artificial ground or by the use of a system ground wire to which are connected the grounding conductors of many secondary mains, and which is itself effectively grounded at intervals that will fulfill for any secondary utilization the system ground wire the resistance and current-carrying requirements of Orders 1036 and 1038.

(a) In single-phase, three-wire systems the ground connection shall be made on the neutral conductor.

(b) In single-phase, two-wire systems the ground connection shall be made on the neutral point or on either conductor.

(c) In two-phase, three-wire systems, the ground connection shall be made to the conductor common to both phases. In two-phase, four-wire systems, a ground connection shall be made to the neutral point of each phase.

(d) In three-phase, three-wire, delta systems, the ground connection shall be made on one conductor or on the neutral point of one phase.

Note: Where the ground is made to the neutral point of one phase and the neutral not extended to a building service, two ground wires and two ground electrodes shall be placed at the pole with the transformer.

4. The grounding conductor of a lighting arrester protecting a transformer which supplies a secondary distribution system may be interconnected solidly or through a gap with the grounded conductor of such transformer, provided that in addition to the direct grounding connection at the arrester either:

(a) The secondary has elsewhere 2 grounding connections at least 20 feet apart to extended underground water piping systems or to artificial grounds complying with Order 1038. One or both of these connections may be at customers' entrances.

(b) The secondary neutral is common with the primary neutral and is grounded in the manner indicated in Order 1031, B, 5.

Note: The lightning arrester must be acceptable lightning protective device having valve characteristics. See definition of lightning arrester, Order 1029.

5. The primary neutral conductor of a single or three-phase supply system operating at not to exceed 8,750 volts to ground may be interconnected solidly with the secondary neutrals and may come under the clearance requirements specified for 0 to 750 volts in Order 1232 provided:

(a) The customers' service entrances and the supply end are grounded in such a way that the requirements of Order 1038 are met and (b) or (c) below are complied with.

(b) The neutral is connected to an extended metallic underground piping system or artificial grounds complying with the
resistance requirements of Order 1038 at each transformer location and at a sufficient number of additional points to total 4 ground connections per mile.

(c) The neutral is connected to single artificial electrodes complying with the dimensions specified in Order 1037, D at each transformer location and at a sufficient number of additional points to total 9 grounds per mile. The additional grounds shall be placed first on poles adjacent to each customer's location, and then approximately equally spaced between the transformer locations.

C. Current in Grounding Conductor. Grounds shall be so arranged that under normal conditions of service there will be no objectionable passage of current over the grounding conductors. The temporary currents set up under accidental conditions, while the grounding conductors are performing their intended protective functions, are not to be considered as objectionable. If an objectionable flow of current occurs over a grounding conductor, due to the use of multiple grounds, (1) one or more of such grounds shall be abandoned, or (2) their location shall be changed, or (3) the continuity of the conductor between the grounding connections shall be suitably interrupted, or (4) other means satisfactory to the authority enforcing this code shall be taken to limit the current.

Order 1032. Grounding Conductor Enclosures.

The lighting and utilization wiring system as well as metal envelopes containing supply conductors must comply with Orders 13-2631 to 13-2633 inclusive, Volume 2, even though in locations used exclusively by supply facilities.

Order 1033. Grounding of Fixed Equipment.

A. Fixed equipment in locations used for supply facilities shall be grounded as required by orders in the various parts of the code.

B. Fixed non-current carrying parts on poles which are more than 8 feet from the ground such as transformer cases may or may not be grounded depending on the company's rules. The company shall follow a standardized practice and make their operating rules conform to the practice adopted. If any portion of these non-current carrying parts are located within 8 feet of the ground they shall be grounded.

C. Instruments, meters, or relays which operate with windings or working parts at 300 volts or more to ground shall have the cases and other exposed bare metal parts grounded unless isolated by elevation or protected by suitable insulating barriers or guards. An exception is made where the equipment is inaccessible to other than qualified persons, in which case the above protection is not required up to and including 750 volts. Above 750 volts, cases shall be isolated by elevation or protected by suitable barriers, grounded metal, or insulating covers or guards. Where instruments, meters, or relays are operated from current or potential instrument transformers on circuits of 300 volts or more to ground, having ungrounded secondary circuits and ungrounded primary circuits, the cases and other exposed bare metal parts shall be grounded. See Order 1035B.

D. Non-current carrying parts of fixed equipment may be grounded by metallically connecting them to the grounded metal raceway or cable armor, or otherwise as provided in Order 13-2656, Volume 2.

Order 1034. Grounding of Portable Equipment.

Portable equipment in locations used for supply facilities shall be grounded as required by Order 13-2645, Volume 2.

Order 1035. Grounding Conductors.

A. Material and Continuity. In all cases the grounding conductor shall be of copper or of other metal which will not corrode excessively under the existing conditions. If joints are unavoidable they shall be so made and maintained as to conform to the resistance requirements of Order 1038.

B. Size and Capacity. The grounding conductor shall conform to the following:

1. For Direct-current Circuits. A grounding conductor for a direct-current supply system shall have a current-carrying capacity not less than that of the largest conductor supplied by the system and in no case less than that of No. 8 copper.

2. For Alternating-current Circuits. A grounding conductor for an alternating-current system shall have a current-carrying capacity not less than one-fifth that of the conductor to which it is attached and in no case less than that of No. 8 copper. See Order 13-2694 for conductor size for interior grounding.

3. For Instrument Transformers. The grounding conductor for instrument cases and secondary circuits of instrument transformers shall not be smaller than No. 12 if of copper or, if of other metal, shall have equivalent current-carrying capacity.

4. For Lightning Arresters. The grounding conductor or conductors shall have a current capacity sufficient to insure continuity and continued effectiveness of the ground connection under conditions of excess current caused by or following discharge of the arrester. No individual grounding conductor shall have less conductance than No. 6 (0.162-inch) copper wire.

5. Interior Wiring, Raceways, Etc. For conductor sizes for grounding interior wiring, raceways, equipment, and portable and pendant equipment see Orders 13-2695 and 13-2696, Volume 2.

C. Mechanical Protection and Guarding Against Contact. 1. For a distance of 8 feet above the ground, floor, or platform, from which
grounding conductors are accessible to the public, the conductors shall be protected by a substantial insulating conduit or wood moulding.

(a) Where the ground resistance is less than 3 ohms, metallic guards may be used except that for lightning arresters insulating conduit or moulding must be placed over the metallic guards and if the metal guard is of magnetic material the grounding conductor shall be electrically connected to both ends.

(b) In rural districts where the grounding conductor is one of a number of grounds on a primary neutral, the moulding or insulating conduit may be omitted if the grounding conductor has triple braid weatherproof insulation.

(c) Grounding conductors whose only purpose is to protect the pole against lightning need not be protected at the ground.

2. The requirements for the protection of grounding wires near supply and communication conductors will be found in Order 1239.

D. Underground. Wires used for grounding conductors, if laid underground, shall, unless otherwise mechanically protected, be laid slack to prevent their being readily broken, and shall have joints carefully painted or otherwise protected against corrosion.


F. In supply stations, manholes, and transformer vaults substantial bare buses may be used. Care should be taken to place them where accidental contact while working on live parts is difficult or they should be guarded.

Order 1036. Ground Connections.

The ground connection shall be substantial and effective, and be made as indicated below, but always to water-piping systems, if available.

A. Piping Systems. For circuits, equipment, and arresters at supply stations, connections shall be made to all available active metallic underground water-piping systems between which no appreciable difference of potential normally exists, if the pipe is of sufficient capacity, and to one such system if appreciable difference of potential do exist between them. At other places connections shall be made to at least one such system if available. Gas piping should be avoided for circuit grounding wherever practicable.

Note: The protective grounding of electric circuits and equipment to water-pipe systems in accordance with these rules should always be permitted, since such grounding offers the most effective protection to life and property and is not injurious to the piping systems.

B. Alternate Methods. Where underground metallic piping systems are not available, other methods which will secure the desired permanence and conductance may be permitted. In cases buried metal struc-

tures of considerable extent will be available and may be used in lieu of extended buried water-piping systems.

In some cases ground connection may be made to the steel frame of a building containing the grounded circuits or equipment, to which frames of machines and other concurrent-carrying surfaces should also then be connected. In such cases the building frame should be itself well grounded by effective connection to the ground. This may require artificial groundings for steel-frame buildings supported on masonry or concrete footings.

C. Artificial Grounds. If resort must be had to artificial grounds, the number should be determined by the following requirements:

1. Not more than one such ground is required for lightning arresters, except where for large current capacity.

2. At least two grounds are required for low-voltage alternating-current distribution circuits, one at transformers or elsewhere and one at each customer's service.

3. Where no part of the circuit or equipment protected can be reached by persons while they are standing on the ground or damp floors, or by persons while touching any metallic piping to which the grounding conductor is not effectively connected, a single artificial ground may be used even if its resistance exceeds that specified in Order 1035. In such cases it is desirable to provide guards for the grounding conductor in accordance with Order 1035, C, wherever it is otherwise accessible, or to provide insulating mats or platforms so located that persons cannot readily touch the grounding conductors without standing on such mats or platforms.

4. Artificial grounds may be arranged to minimize the potential gradient along the surface of the earth by use of radial connecting wires underneath the earth surface or by other suitable means.

D. Grounds to Railway Returns. Protective ground connections should not be made to railway negative-return circuits when other effective means of grounding are available, except ground connections from electric-railway lightning arresters.

When ground connections are of necessity made to the grounded track return of electric railways, they shall be made in such a manner as not to afford a metallic connection (as indirectly through a grounded neutral with multiple grounds) between the railway return and the other grounded conducting bodies (such as buried piping and cable sheaths).

Note: This order does not prohibit the making of drainage connections (which are not protective grounds) between piping systems and railway negative-return circuits for the prevention of electrolysis.

Note: Multiple protective ground connections from other circuits to railway returns should be avoided; and where multiple artificial grounds are made on such other circuits near such railway returns, they should be so arranged as to prevent the flow of any considerable current in and between such connections, which flow would reduce their effectiveness, or otherwise cause damage.
Order 1037. Method.

A. Piping. The point of attachment of a grounding conductor to a water-piping system shall be on the street side of the water meter, or on a cold-water pipe of adequate current-carrying capacity, as near as practicable to the water-service entrance to the building or near the equipment to be grounded, and shall be accessible except by special permission. If the point of attachment is not on the street side of the water meter, the water-piping system shall be made electrically continuous by bonding together all parts between the attachment and the pipe entrance which are liable to become disconnected, as at meters and service unions. If water meters are located outside buildings or in concrete pits within buildings where piping connections are embedded in concrete flooring, the ground connections may be made on the building side of the meters.

Gas-piping systems within buildings shall not be used for purposes of this rule where water pipes are readily available. Gas piping may serve as the grounding electrode for fixtures located at a considerable distance from water piping. Where gas piping is so used it shall be bonded to the water-piping system at the point of entrance of water-piping. (See Order 1036, A.1.)

B. Ground Clamps. The ground connection to metallic piping systems shall be made by means of an approved clamp firmly bolted to the pipe after all rust and scale have been removed, or by means of a brass plug which has been tightly screwed into a pipe fitting or, where the pipe is of sufficient thickness, screwed into a hole in the pipe itself, or by other equivalent means.

The grounding conductor shall be attached to the clamp or to the plug by means of solder or by an approved solderless connector. The point of connection shall be as readily accessible as practicable.

Note: With bell-and-spigot joint pipe it may be necessary to connect to several lengths where circuits or equipment of large current capacity are being grounded.

C. Contact Surfaces. If conduit, couplings, or fittings having protective coating of nonconductive material, such as enamel, are used, such coating shall be thoroughly removed from threads of both couplings and conduit and such surfaces of fittings where the conduit or ground clamp is secured, in order to obtain the requisite good connection. Grounded pipes shall be free from rust, scale, etc., at the place of attachment of ground clamp.

Conduits, other metal raceways, and the armor of cables shall be securely fastened in outlet boxes, junction boxes, and cabinets, so as to secure good electrical connection.

In ice houses, packing plants, etc., where a great deal of moisture is present and where conduits are attached to metal cabinets, cut-out, pull, or junction boxes, compensators, etc., by means of lock nuts and bushings, these conduits should be bonded together.

D. Electrodes for Artificial Grounds. Where artificial grounds are used, the electrodes shall, as far as practicable, be embedded below permanent moisture level.

Buried-plate electrodes shall present not less than 2 square feet of surface to exterior soil. Electrodes of plate copper shall be at least 0.06 inch in thickness. Electrodes of iron or steel plates shall be at least 1/8 inch in thickness.

Electrodes of iron or steel pipe shall be galvanized and not less than 3/4 inch (nominal size). Electrodes of rods of steel or iron shall be at least 3/4 inch minimum cross-sectional dimension. Approved rods of nonferrous materials or their approved equivalent used for electrodes shall be not less than 1/4 inch in diameter. Driven electrodes of pipe or rods, if of less than standard commercial length, shall preferably be of one piece, and, except where rock bottom is encountered, shall be driven to a depth of at least 8 feet regardless of size or number of electrodes used. Such pipes or rods shall have clean metal surfaces and shall not be covered with paint, enamel, or other poorly conducting materials.

Grounds used solely for wood pole lightning protection and which are not connected to any circuits or equipment may be of any form or size. The grounding conductor must be protected in the same manner as any grounding conductor where it passes through conduits, but it need not be protected near the ground. A pole protection ground may be used as an artificial ground for a circuit or equipment if the down conductor is fully protected and the ground electrode has the area and thickness requirements above.

A guy and anchor may be used as a combined grounding conductor and artificial grounding electrode if they are electrically bonded together and the anchor and rod present sufficient surface to the soil.

Order 1038. Ground Resistance.

A. Limits. The combined resistances of the grounding wire and the connection with the ground shall not exceed 3 ohms for water-pipe connections nor 25 ohms for artificial (buried or driven) grounds. Where it is impracticable to obtain, with one electrode, artificial ground resistance as low as 25 ohms, this requirement shall be waived, and two electrodes, at least 6 feet apart, shall be provided.

B. Checking. The resistance of station grounds should be checked when made.

Note: With artificial grounds this check may be made by measuring the voltage between the grounded point of the circuit, or the grounded frame of the equipment, or the grounded point of the lightning arrester, and an auxiliary metal reference rod or pipe driven into the ground, while a measured current is flowing through the ground connection and any exposed metal piping or other artificial ground not less than 20 feet distant.

Note: If the station ground is to water piping, the check may be made with current flowing through the water piping and some independent piping system or artificial ground not less than 20 feet distant.

Note: The auxiliary rod or pipe should be at least 10 feet from any artificial ground or piping systems through which the measured current is made to flow.
All ground connections shall be inspected periodically. Ground connections on distribution circuits should, when installed, be tested for resistance unless multiple grounding is used.

Order 1039. Separate Grounding Conductors and Grounds.

A. Grounding Conductors. Grounding conductors from equipment and circuits of each of the following classes, if required by these orders, shall be run separately to the ground or to a sufficiently heavy grounding bus or system ground cable which is well connected to ground at more than one place, except as provided in Order 1031 B, 4 and in Order 1031 B, 5.

1. Lightning arresters.
2. Secondaries connected to low-voltage lighting or power circuits, except that if a secondary distribution system has multiple grounds, utilization equipment and wire enclosures may use the same grounding conductor.
3. Secondaries of current and potential instrument transformers having primary voltages of more than 750 volts, and cases of instruments on these secondaries.
4. Frames of direct-current railway equipment and of equipment operating in excess of 750 volts.
5. Frames of utilization equipment or wire raceways other than covered by item 4, except as provided in item 2.

B. No electric conductor or non-current-carrying part of electric equipment shall be grounded to a small water system, small sewage system, wells, pump casings, small gas systems, gas tanks, or any small metallic systems, parts of which are at times in contact with persons or animals unless a permanently assured ground resistance of less than 3 ohms is obtained.

Note: It is advisable from a safety standpoint to keep lightning rod grounds free from such metallic structures as pumps, cow stanchions, etc., which are frequently in contact with persons or animals. It is advisable in installations such as farms that the pump motor be insulated from the water pump. (See Note under Section 13-300).

PART I

ELECTRICAL SUPPLY STATIONS AND SUBSTATIONS

SECTION 110. SCOPE OF ORDERS


The following orders (1100-1194) apply to all electrical equipment and conductors of over 600 volts. If such equipment and conductors are not installed in supply stations or other quarters accessible only to qualified persons, they shall, in addition to complying with orders 1100 to 1194, comply also with the orders of Part 3. (See Order 13-0001B3).

Equipment and wiring of less than 600 volts shall comply with the orders of Part 3, except that if such equipment or wiring is installed in supply stations or other quarters accessible only to qualified persons, it may be installed in conformity with Orders 1100 to 1194, in which case only wiring used to distribute a power supply for lighting, service outlets and other utilization equipment need comply with the orders of Part 3. (See Order 13-0001C.)

For the intent of rules, waivers, etc., See Order 1013.

SECTION 111. GENERAL PROTECTIVE ARRANGEMENTS OF STATIONS AND SUBSTATIONS

Order 1110. General Requirements for Rooms and Spaces.

A. Enclosure of Rooms and Spaces. Rooms and spaces shall be so arranged with fences, screens, partitions, or walls as to prevent entrance of unauthorized persons or interference by them with equipment inside, and the entrances not under observation of an authorized attendant shall be kept locked. Signs prohibiting entrance to unauthorized persons shall be displayed at entrances.

B. Rooms and Spaces. All rooms or spaces in which electrical equipment is installed shall comply with the following requirements:

1. Fire Resistant Construction. They shall be as far as practicable, noncombustible.
2. Storage and Manufacturing Processes. They shall be used neither for the storage of material nor for manufacturing processes causing hazard to electrical operators, except those materials or processes attendant upon the production or distribution of a supply of electrical energy.
3. **Hazardous Conditions.** They shall be free from combustible dust or flyings, flammable gas, or acid fumes in dangerous quantities. (For battery rooms, see Section 114. For auxiliary equipment in hazardous locations, see Order 1127) Also see General Orders on Dusts, Fumes, Vapors and Gases published by the Industrial Commission.

4. **Ventilation.** They should be well ventilated. See Industrial Commission Codes.

5. **Moisture and Weather.** They should be dry. In outdoor stations or stations in wet tunnels or subways, all live parts of equipment should be enclosed in weatherproof cases, unless the equipment is suitably designed to withstand the prevailing atmospheric conditions.

C. **Rotating Machinery.** Rotating machinery shall be installed upon suitable supports or foundations and if necessary secured in place.

D. Fences used to exclude the public from electrical equipment, shall be so placed that they are not closer to live parts or parts that may become alive than that given in column 3 of table 2, Order 1124. Such fences shall be of a type that cannot be readily climbed and be not less than 5 feet in height when enclosing equipment operating at 15,000 volts or less and not less than 6 feet in height where the voltage is above 15,000.

**Order 1111. Illumination.**

A. **Under Normal Conditions.** Rooms and spaces in buildings where electrical apparatus or machinery is located shall have means for artificial illumination in accordance with the following table. The means of illumination shall be maintained ready for use at all times. (Also see 1148)

Note: It is not intended that this rule should require permanent lighting in switch cells and similar small spaces occupied by electrical apparatus where permanent lighting is impracticable. The Industrial Lighting Code of the Wisconsin State Industrial Commission includes general standards of illumination required from the point of view of safety.

**TABLE NO. 1**

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum Foot-Candles</th>
<th>Modern Practice Foot-Candles</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Switchboard instruments, gauges, switches, etc</td>
<td>5</td>
<td>10 to 15</td>
</tr>
<tr>
<td>(2) Switchboards with no exposed live parts</td>
<td>3</td>
<td>6 to 15</td>
</tr>
<tr>
<td>(3) Storage battery room</td>
<td>3</td>
<td>6 to 10</td>
</tr>
<tr>
<td>(4) Generating room, boiler room, pump room (at machinery or exposed live parts)</td>
<td>5</td>
<td>10 to 15</td>
</tr>
<tr>
<td>(5) Stairways and passageways (measurements made at floor level where there is moving machinery, exposed live parts, hot pipe, etc)</td>
<td>5</td>
<td>10 to 15</td>
</tr>
<tr>
<td>(6) Any traversed space (measured at floor level)</td>
<td>2</td>
<td>5 to 10</td>
</tr>
</tbody>
</table>

Note: The above illumination values are to be measured at working surfaces, except as stated. The "minimum foot-candles" specify the lowest illumination for safety, but the "modern practice foot-candles" are recommended.

B. **Emergency Lighting.** A separate emergency source of illumination shall be provided in every station where an attendant is located. This source shall be from an independent generator, storage battery, gas main, portable light, or other suitable source.

*Note: Flame lamps (gas or oil) should not be used in battery rooms.*

C. **Shading of Lamps.** Overhead and local lamps shall be shaded as required by the Industrial Lighting Code published by the Industrial Commission.

D. **Fixtures, Pendants and Plug Receptacles.** (See also Section 13-410 of Part 3, Volume 2)

Arrangements of permanent fixtures and plug receptacles shall be such that portable cords need not be brought into dangerous proximity to live or moving apparatus. All lamps shall be arranged to be controlled, replaced, or trimmed from safely accessible places.

Pendent conductors shall not be installed where they can be readily moved so as to bring them in contact with live parts of electrical supply equipment.

E. **Attachment Plugs.** Portable conductors shall be attached to fixed wiring only through separable attachment plugs which will disconnect all poles by one operation.

**Order 1112. Buildings, Yards and General Safety.**

A. **Buildings to Comply with Building Code.** Buildings in which electrical supply equipment is installed shall be constructed in every detail to comply with the Building Code published by the Industrial Commission.

B. **General Orders on Safety to be Complied With.** Floors, passageways, stairways, floor openings, platforms, runways, moving machinery, etc., shall be constructed and safeguarded as required by the General Orders on Safety published by the Industrial Commission.

C. **Protection from Rain and Falling Objects.** Electrical equipment located outdoors, when necessary, shall be protected against injury from rain, snow, sleet, flying or falling objects.

D. **Exits.** Each room or space and each working space about equipment shall have suitable means of exit which shall be kept clear of all obstructions.

If the plan of the room or space and the character and arrangement of equipment are such that an accident would be liable to close or make inaccessible a single exit, as in the case of long narrow rooms, platforms, passageways, spaces behind switchboards, or wire and pipe tunnels, a second exit shall be provided if practicable. In all cases the Building Code should be consulted.

E. **Floors.** Floors shall have even surfaces and afford secure footing. Projecting nails, loose boards, uneven or greasy floors, and slippery floors should be avoided.

Note: Otherwise slippery floors or stairs should be provided with antislip treads.
F. Passageways. Passageways (including stairways) and working spaces shall be unobstructed, and (except such as are used solely for infrequent inspection, construction and repair) shall, where possible, provide at least 6.5 feet headroom. (See Order 1125 for working space.) The General Orders on Safety by the Industrial Commission also contain orders applying to passageways.

G. Runways and Platforms, Rails and Toe Boards. (See General Orders on Safety published by the Industrial Commission.)

H. Stairways, Handrails. (See General Orders on Safety published by the Industrial Commission.)

I. Platforms with Stairways or Stationary Ladders. (See General Orders on Safety published by the Industrial Commission)

J. Continuity. The heads of permanent ladders shall be provided with guards such as gates or sliding pipe sections whenever the heading breaks the continuity of a railing adjacent to working space.

For very long ladders occasional landings, turns, or safety loops are recommended.

K. Stair Toe Boards. Toe boards shall, where practicable, be arranged at back of stairway treads where over exposed live or moving parts or over working spaces, passageways, or other stairways.

L. Walks and Platforms for Overhead Work. (See General Orders on Safety published by the Industrial Commission)

Order 1113. Fire Fighting Appliances.

A. Fire Extinguishers. Adequate approved fire-extinguishing appliances shall be conveniently located and conspicuously marked. Any such appliances which have not been listed by Underwriters' Laboratories, Inc. for use on live parts shall be plainly and conspicuously marked with a warning to that effect.

B. Temperature Conditions. Fire extinguishers shall not be installed in locations subject to conditions of high and low temperature which will reduce their effectiveness.

Note: Carbon-tetrachloride extinguishers are not adversely affected by temperatures between 60°C (140°F) and minus 40°C (-40°F).

Order 1114. Oil Filled Apparatus.

For the purpose of these rules, oil-filled apparatus is divided into three classes, each of which requires different treatment: (1) Oil switches and circuit-breakers (See also Section 117); (2) transformers, induction regulators, etc. (See also Section 118); and (3) lightning arresters (See also Section 119). The necessary safety precautions depend largely on whether the apparatus is located in buildings or outdoors.

A. Oil Switches or Circuit-breakers. Oil switches or circuit-breakers and their transformers, regulators, reactors, or other associated equipment should be separated from other apparatus by adequate non-flammable barriers, or otherwise adequately isolated. Floors and floor drains should be so arranged that oil will quickly collect in a suitable drainage or storage system provided for the purpose either inside or outside of the building as may be advisable.

Where switches or switch compartments are constructed to prevent an appreciable amount of oil being thrown outside of the compartment, exterior drainage or storage systems are not necessary.

If located outdoors they should be adequately isolated.

If located near building walls the walls should be of fire resistant construction and should have doors or windows so located and arranged that burning oil is not liable to pass through them to flammable material or apparatus.

Note: It should be recognized that oil-switch or circuit-breaker failures may depend upon the size and rupturing capacity of the switch or circuit breaker and the short-circuit duty that may be required of it. The short-circuit current depends on the generating capacity supplying the system on which the switch or circuit-breaker is used as modified by the current-limiting characteristics of the system or by special apparatus installed for that purpose. By “generating capacity” is meant all of the apparatus contributing to the short-circuit current.

B. Transformers, Induction Regulators, Etc. Containing a Liquid That Will Not Burn. If transformers, induction regulators, etc. are in buildings, the floors and floor drains should be so arranged that oil will quickly collect in a suitable drainage or storage system provided for the purpose either inside or outside of the building as may be advisable. If the apparatus contains large quantities of oil, each unit or group should preferably be placed in a separate fireproof compartment suitably ventilated. If located outdoors, they should be adequately isolated. Provision should be made for quickly draining away to a safe distance any oil that may be spilled. This may be done by ditches and drains or the oil may be absorbed and danger of spreading removed by paving the yard around the transformers or other devices with cinders or other absorbent material to a depth of several inches.

If located in buildings, transformer tanks containing large quantities of oil shall, where practicable, be so arranged that approved fire- quenching material may be introduced above the oil inside the tank or in the surrounding compartment, except where tanks are completely filled with oil or where the space above the oil is filled with an inert gas.

C. Transformers, Induction Regulators, Etc. Containing a Liquid That Will Not Burn. If in buildings, transformers, induction regulators, etc., filled with a liquid that will not burn should comply with Order 1153.

D. Lightning Arresters. If located in buildings, lightning arresters containing oil should be separated from other equipment by fire walls adequate to completely isolate them in case of fire.

When located outdoors they should be adequately isolated. Provision for quickly draining away oil should be made as indicated for transformers in B above.
SECTION 112. PROTECTIVE ARRANGEMENTS OF EQUIPMENT

Order 1120. General Requirement.

All electrical equipment shall be of such construction and so installed and maintained as to reduce the life and fire hazard as far as practicable.

Order 1121. Inspections.

A. Regular Equipment. Electrical equipment shall comply with these orders when placed in service and shall thereafter be cleaned when necessary and inspected at such intervals as experience has shown to be necessary. Any equipment or construction known to be defective so as to endanger life or property shall be promptly repaired, permanently disconnected, or isolated until repairs can be made. Repairs, additions and changes to electrical equipment and conductors shall be made by qualified persons only.

B. Idle Equipment. Infrequently used equipment or wiring maintained for future service should be thoroughly inspected before use to determine its fitness for service.

C. Emergency Equipment. Equipment or wiring maintained for emergency service should be periodically inspected and, where necessary, tested to determine its fitness for service.

D. New Equipment. New equipment should be thoroughly inspected before being put in service.

Order 1122. Guarding Shaft Ends, Pulleys and Belts, and Suddenly Moving Parts.

A. Transmission Machinery. This code is supplemented by the General Orders on Safety and other Industrial Commission requirements which specify methods for safeguarding pulleys, belts, and other equipment used in the mechanical transmission of power.

B. Suddenly Moving Parts. Parts of equipment which move suddenly in such a way that persons in the vicinity are liable to be injured by being struck, such as handles and levers of circuit breakers, shall be guarded or isolated.

Order 1123. Protective Grounding.

A. Grounding Method. All grounding which is intended to be a permanent and effective protection measure, such as lightning arrester, circuit, equipment, or wire roadway grounding, shall be made in accordance with the methods specified in Section 103 of the Introductory Part, Volume 1, and Section 13-250, Volume 2.

B. Grounding Noncurrent Carrying Metal Parts. All electrical equipment, if operating at more than 150 volts to ground, or if in hazardous locations, regardless of voltage, shall have the exposed noncurrent-carrying parts, such as frames of generators and switchboards, cases of transformers, lightning arresters and switches, and operating levers, effectively grounded or isolated.

ELECTRICAL CODE—ORDER 1124

It is recommended that exposed noncurrent-carrying parts of electrical apparatus operating at 150 volts or less to ground be effectively grounded.

It is recommended that all metallic guards (including rails, screens, etc.) about electrical equipment should be effectively grounded where such grounding will reduce the hazard.

Except in hazardous locations, exposed noncurrent-carrying parts of equipment operating at more than 150 volts to ground may be left ungrounded and either isolated, or guarded, or provided with insulating mats as required for live parts at the same voltage. Such isolation, guarding, or mats should be so arranged that persons cannot inadvertently touch these parts while also touching a grounded surface.

Note: Hazardous locations include those where dampness, acid fumes, explosives, inflammable gas, or fumes normally exist. (See Section 15-550, Part 1, Volume 2)

Exception 1: Exposed noncurrent-carrying metal parts of equipment of grounded direct-current circuits or series direct-current circuits are exempted from this order, if suitably insulated from the ground and from neighboring grounded surfaces. In addition suitable permanent insulating barrier guards shall be installed so that a person cannot, while touching such insulated frames, at the same time inadvertently touch or stand upon other grounded bodies.

Exception 2: Exposed noncurrent-carrying metal parts of supply equipment for communication circuits are exempted from this order; provided they are suitably insulated from the ground and neighboring grounded conductors and surfaces.

Exception 3: Metal shell sockets and metal guards of portable lamps, if suitably insulated, are exempted from this order.

C. Grounding Equipment During Repairs. Electrical equipment or conductors normally operating at more than 750 volts on or about which work is occasionally done while separated from a source of electrical energy by switches or disconnectors only, shall be provided with some means, such as switches, connectors, or readily accessible ground conductor, for grounding them. (See orders 1423 and 1424).

Order 1124. Guarding Live Parts.

It is the intent of this order to require electrical facilities which are or may become alive to be arranged or guarded in such a way as to prevent inadvertent contact by persons or material. The order requires guards unless the facilities have certain minimum clearances, are isolated by enclosure, or in some cases are arranged in such a way that contact cannot normally be made unless the person is insulated from ground. Station or substation buildings or enclosing walls or fences used to exclude the public or house the parts are not enclosures within the meaning of this order (See 1124C).

A. Where Required. 1. Ungrounded parts of electrical equipment which operate at or may become charged to more than 150 volts shall be guarded when vertical clearances from ground, floors, platforms, or permanent supports for workmen are less than that given in column 2,
table 2, of this order, or when the horizontal clearance from the nearest edge of such surface is less than that given in column 3 of table 2. This includes parts exposed through windows, wall openings, etc.

Exception: Guards need not be provided where it is necessary to permit routine inspection of rotating equipment as required under operating conditions.

Note: The rule applies to the electrical parts energized or considered available for service in temporary or partially completed installations, as well as to permanent installations.

Definitions: The guard zone means the space of minimum clearance from guards to electrical parts where guards may be installed by workmen without definite engineering design. The radius of this zone varies with the voltage as specified in column 4 of table No. 2. (See Order 14280 of the code for working clearances above live parts).

Permanent supporting surfaces for workmen include floors, platforms, or structures used regularly and frequently by workmen for inspections and maintenance near live adjacent parts: runways, ladders, stairways, etc.

2. Parts over or near frequently traveled passageways through which material may be carried, or in or near spaces, such as corridors, storerooms, boiler rooms, etc. used for non-electrical work, should, where practicable, be guarded or given clearances in excess of those specified, such as may be necessary to secure reasonable safety. The guards should be substantial; should, where practicable, completely shield or enclose without openings the parts; and when in spaces used for non-electrical work should be removable only by means of tools or keys.

<table>
<thead>
<tr>
<th>Table No. 2</th>
<th>Minimum Clearance from Live Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Voltage</td>
<td>Minimum Vertical Clearance of</td>
</tr>
<tr>
<td></td>
<td>Unguarded Parts</td>
</tr>
<tr>
<td>Feet</td>
<td>Inches</td>
</tr>
<tr>
<td>150</td>
<td>7</td>
</tr>
<tr>
<td>800</td>
<td>7</td>
</tr>
<tr>
<td>700</td>
<td>7</td>
</tr>
<tr>
<td>700</td>
<td>7</td>
</tr>
<tr>
<td>600</td>
<td>7</td>
</tr>
<tr>
<td>600</td>
<td>7</td>
</tr>
<tr>
<td>500</td>
<td>7</td>
</tr>
<tr>
<td>1100</td>
<td>7</td>
</tr>
<tr>
<td>1200</td>
<td>7</td>
</tr>
<tr>
<td>1200</td>
<td>7</td>
</tr>
<tr>
<td>1320</td>
<td>7</td>
</tr>
</tbody>
</table>

Note: Interpolate for intermediate values.

3. Parts of indeterminate potential, such as telephone wires exposed to induction from high-tension lines, ungrounded neutral connections, ungrounded frames, ungrounded parts of lightning arresters, ungrounded instrument cases connected directly to the high-voltage circuit, etc. shall be classified, and where practicable, guarded on the basis of the maximum voltage which may be present.

B. Strength of Guards. Guards shall be sufficiently strong and shall be supported rigidly and securely enough to prevent them from being displaced or dangerously deflected by a man slipping or falling against them.

C. Types of Guards. 1. Location or Isolation. Parts having clearances equal to or greater than specified in A above are guarded by location. Parts are guarded by isolation when all entrances to enclosed spaces, runways, ladders, etc. are kept locked or warning signs posted at all entrances, in which case no other permanent guards need be supplied. The enclosures referred to are those within stations, substation vaults, or vaults which contain limited amounts of equipment that must be entered for work of a very limited nature. For example, the area in back of an open back switchboard may be enclosed to eliminate the necessity of guards but enclosing an outdoor substation in a fence does not eliminate the necessity of guards.

2. Grounded Metal Cable Sheaths. These are suitable guards except where exposed to mechanical injury. Where so exposed, metal conduit or other suitable guards should be provided.

3. Railings and Fences. Railings are not substitutes for complete guards, and if used shall be located at a horizontal distance of at least 3 feet (and preferably not more than 4 feet) from the nearest point of guard zone, which is less than 7/8 feet above the floor.

Fences used to exclude the public from electrical equipment, shall be so placed that they are not closer to live parts or parts that may become alive than that given in column 3 of table 2, Order 1124. Such fences shall be of a type that cannot be readily climbed, and not less than 5 feet in height when enclosing equipment operating at 15,000 volts or less and not less than 6 feet in height where the voltage is above 15,000.

4. Location of Guards. Guards inside of the guard zone or less than 4 inches outside, shall completely enclose the parts from contact up to the heights listed in column 2 of table No. 2 of Order 1124 (A). They shall not be closer to the live parts than listed in column 4 of the table in Order 1124 (A) except when suitable insulating materials are used with circuits of less than 7,500 volts. (See note under table in Order 1124 (A)). If more than 4 inches outside of the guard zone, the guards need not extend more than 7 1/4 feet above the floor. Covers or guards, which must at any time be removed while the parts they guard are alive, should be arranged so that they cannot readily be brought into contact with live parts. This does not apply to enclosing fences as described in 3 above and Order 1110D.

5. Insulating Covering on Conductors or Parts. The insulating covering on parts exceeding 750 volts shall not be considered a pro-
tection. For parts less than 750 volts, positive barriers, enclosures, or similar arrangements are preferable, but in dry places where not exposed to mechanical injury, varnished-cloth tape, or other insulation suitable for the voltage involved may be used as a guard. The taping over connections shall be of a type and thickness suitable for the voltage involved. Friction tape is not acceptable as the sole protection.

Exception: On circuits not exceeding 1500 volts, when other guarding is impracticable, insulation suitable for the voltage involved may be used back of the switchboards or in equivalent sheltered locations. Insulating mats or platforms shall be provided so that an operator cannot readily touch the uninsulating covering without touching the mats.

6. Mats. Suitable insulating mats placed so that a person cannot inadvertently come in contact with the live parts without standing on the mat may be used in the following cases:

Parts less than 750 volts, exposed at switchboards, switches, or on rotating machinery.

Disconnect switches less than 7,500 volts mounted on back of switchboards or in similar sheltered locations when barriers are placed between each blade so as to extend beyond the disconnected parts in any position. Other means of guarding may be used where convenient.

Ungrounded frames of existing high-voltage series generators.

As provided for in paragraphs C 5 and C 8 of this rule.

Mats should be of rubber or other suitable insulating material, or in dry locations they may be of wood fastened with wood pins, cork matting, or heavy (one-fourth inch) linoleum laid without joints and without metal fastenings. A "nonslip" surface should be maintained and the mats should be laid and maintained so as to reduce the tripping hazard to a minimum.

Note: Beveled edges will help in many cases.

7. Parts Below Supporting Surfaces for Persons. The supporting surfaces above live parts shall be without openings. Toe boards at least 6 inches high shall be provided at all edges.

8. Special Rules for Plug-type Switchboards. A mat is a suitable guard when placed so that the operator must stand on it when operating the plugs. Suitable guards on handles of all plugs shall be provided.

D. Parts of Less than 300 Volts. It is recommended that live parts of more than 150 volts be enclosed or guarded when in exposed locations.

Order 1125. Working Space About Electrical Equipment.

A. Where Required. Adequate and readily accessible working space with secure footing shall be maintained about all electrical parts or equipment which require adjustment or examination if exposed while in service.

B. Width of Working Space. The horizontal clearance from the farthest edge of the working space to the nearest live part of more than 300 volts, exposed after removing guards, shall be 6 feet less than 3 feet plus the guard zone radius as given in column 4 of the table in Order 1124. (When the live parts are on only one side, column 3 of the table in Order 1124 gives the minimum permissible value for the total width of the free space). See also Order 1121F for headroom.

C. Elevated Parts. Clearance about normally elevated or isolated parts requiring occasional adjustment should be provided so the men need not come within the danger zone (See Order 1422C of this code) around adjacent energized parts, unless guarded in accordance with Orders 1124 and 1126.

Order 1126. Equipment for Work on Live Parts.

A. 7,500 Volts or Less. When it is necessary for men to bring their bodies or any material or tools handled into the danger zone (see Order 1422B of this code) suitable protective devices, such as rubber gloves, rubber sleeves (if necessary), insulating tools, portable rubber mats or insulating stools, rubber blankets, insulated fuse pullers, testing and grounding devices, switch sticks, etc., should be provided, periodically examined, and kept in safe condition. If the voltage exceeds the limit of 5,000 volts set for standard rubber gloves, special gloves should be furnished if the work is conducted so that their use is necessary.

B. More than 7,500 Volts. Suitable protective devices, such as testing and grounding devices, switch sticks, fuse pullers, special insulated tools, etc., should be provided, periodically inspected, and kept in safe condition. Such devices shall provide an ample margin of safety for the voltage involved and should be constructed so that the workman's body can remain outside of the danger zone. (See Order 1422C of this code).

Order 1127. Hazardous Locations.

A. Enclosure of Arcing and Heating Parts. In locations where flammable gas or flammable flyings normally exist in dangerous quantities, all parts where sparking, arcing, or dangerous heating is liable to occur shall be enclosed so as to reduce the hazards as far as practicable.

This enclosure shall be by one of the following methods:

1. By placing in separate compartments or rooms.
2. By using nonabsorptive, noncombustible casings of the dust-tight type when flammable dust or flyings are present.
3. By using nonabsorptive, noncombustible casings designed for use in explosive atmospheres when flammable gas exists in dangerous quantities.

B. Grounding. The metal frames and other exposed noncurrent-carrying metal parts of equipment in these locations shall be effectively grounded as specified in Section 103.

The Flammable Liquids Code published by the Industrial Commission should be consulted.
Order 1128. Shielding of Equipment from Deteriorating Agencies.

Suitable shields or enclosures shall be provided to protect exposed current-carrying parts, insulation of leads or electrical devices or equipment where susceptible to injury by being installed directly under rotating equipment or in other locations where dripping oil, excessive moisture, steam, vapors, or similar agents exist. (For battery rooms see Order 1146).

Order 1129. Identification.

A. Equipment in General. Electrical equipment shall be suitably identified when necessary for safety. The identification may be by position, color, number, name-plate, label, design, or other means, but the method of identification chosen shall be uniform throughout any one system. (See Order 1174 for switches).

The voltage and intended use shall be shown when important.

Identification marks should not, if possible, be placed on removable covers or casings, such as instrument covers and disconnecter compartment doors, where the interchanging of these removable parts might lead to accident.

B. Generators and Motors. Generators and motors shall each be provided with a name-plate giving the maker's name, the rating, normal full-load speed and the voltage.

SECTION 113. ROTATING EQUIPMENT (THIS INCLUDES GENERATORS, MOTORS, MOTOR GENERATORS, AND CONVERTERS)

Order 1130. Speed-Control and Stopping Devices.

A. Speed Limits for Prime Movers. Prime movers driving generating equipment shall be provided with automatic speed-limiting devices, where harmful overspeed can otherwise occur, in addition to their governors, if necessary as with some types of steam turbines.

B. Stops for Rotating Equipment. Stopping devices, such as switches or valves which can be operated from locations convenient to machine operators, shall be provided for prime movers or motors driving generating equipment.

Devices which operate in such a way that the development of defects or their becoming inoperative will stop the units protected should be used where practicable.

Controls to be used in emergency for machinery and electrical equipment should be so located as to permit operation with a minimum of danger during such emergency (See Order 1175 for fuses and circuit-breakers).

C. Speed Limit for Motors. Machines of the following types shall be provided with speed-limiting devices unless their inherent characteristics or the load and the mechanical connection thereto are such as to safely limit the speed, or unless the machine is always under the manual control of a qualified operator:

1. Separately excited direct-current motors.
2. Series motors.
3. Motor generators and converters which can be driven at excessive speed from the direct-current end, as by a reversal of current or decrease in load.

Note: The required limitation of speed may be obtained by the use of a relay, centrifugal switch or other similar device which will cut off the supply of energy when excessive speed is attained.

D. Low-voltage or Under-voltage Protection. All motors so employed or arranged that an unexpected starting of the motor is a hazard, shall be equipped with low-voltage protection which will automatically cause and maintain the interruption of the motor circuit when the voltage falls below an operating value.

Exception: Those motors with an emergency or essential use or where the opening of the circuit will cause a special hazard to life or service are exempted.

E. Adjustable Speed Motors. Adjustable speed motors, if controlled by means of field regulation, shall be so equipped and constructed that the field cannot be weakened sufficiently to permit dangerous speed.

F. Protection of Control Circuits. Where speed-limiting or stopping devices are electrically operated, the control circuits by which such devices are actuated shall be in conduit or otherwise suitably protected from mechanical injury, in accordance with Order 1181.

Order 1181. Guards for Live Parts.

A. Guards on Rotating Equipment. Guards complying with Order 1124 shall be provided.

B. Access to Live Parts. Where necessary, steps and handrails shall be installed on or about large machines to afford ready access to live parts which must be examined or adjusted during operation.

C. Frame Switches. Where switches are installed on the frames of generating equipment for the purpose of reducing inductive voltage in generator and converter field coils they shall be suitably constructed or guarded to prevent passersby from inadvertently coming in contact with the live parts, to protect persons handling them, and to prevent their being accidentally opened or closed.

D. Arcing Shields. Suitable shields or barriers other than rails shall be provided where practicable to prevent arcing on large commutators or any other parts of moving apparatus from injuring persons in the vicinity, as in the case of narrow working spaces located immediately above or beside such equipment.

Exception: Twenty-five cycle apparatus of less than 150 volts is exempted.

It is recommended that where suitable shields have not been installed, goggles should be available.


A. Grounding Machine Frames. All frames of rotating electrical equipment shall be effectively grounded except as permitted below and in Order 1123.
B. Coupled Machines. Where two or more machines, either of which operates at more than 150 volts, are mechanically coupled together and the operator can touch the frames of more than one at a time, the frames of all such shall be effectively grounded, or bonded together electrically.

Exception: This rule may be waived with high-voltage series generator sets in existing installations where for operating reasons the generators must have their frames insulated from the ground and the motor frame is grounded, and where it is impracticable to place insulating barriers between the grounded and ungrounded frames.

C. Auxiliaries. Exciters and auxiliary circuits electrically connected to generators or other machines of more than 750 volts (with frames ungrounded) shall be installed, protected, and identified as machines and circuits of the same voltage as that of the machine for which they are auxiliaries.

Order 1133. Terminal Bases and Bushings.

A. Terminal Bases. Terminal bases, if used on motors or generators, should preferably be of suitable fire-resistant and moisture-resistant insulating material such as slate, marble, or porcelain. It is recommended that unguarded terminals be protected by a cover of insulating material or grounded metal.

B. Bushings. Bushings where used for wires coming through frames of motors or generators should preferably be of porcelain, suitable composition material, or of hardwood properly filled, except that soft rubber may be used if not exposed to oil, grease or other deleterious substances in such quantities as to cause their rapid destruction.

Order 1134. Deteriorating Agencies.

A. Protection Required. Suitable shields or enclosures shall be provided to protect exposed current-carrying parts, insulation of leads, balance coils, or other electrical devices belonging to motors and generating equipment where installed directly under equipment or in other locations where dripping oil, excessive moisture, steam vapors, or similar injurious agents exist.

B. Grounding. The metal frames and other exposed noncurrent-carrying metal parts of equipment in these locations shall be effectively grounded.

Order 1135. Motors.

A. Control. If the starting is caused automatically (not manually) as, for example, by a float switch, or if the starting device or control switch is not located close to the motor and all parts of the machinery operated, the starting arrangement shall be designed so that it can positively be kept open by means of locks or equivalent devices.

B. Motors in Hazardous Locations. Motors with their auxiliary equipment, at which sparking or arcing or high temperature is liable to occur, when in rooms normally containing explosives, flammable gas, or flammable flyings shall be so installed, as to reduce the hazard by enclosure in an adequately ventilated separate compartment, by solidly enclosed equipment designed for use in explosive atmospheres, or, when protected against flyings only, by partitioning off a space or by a suitable boxing.

C. Motors Exposed to Dust. Motors should be protected from dust. Enclosed-type motors are recommended in dusty places, being preferable to boxing.

D. Motors on Wooden Floors. Where practicable, motors permanently located on wooden floors should be provided with suitable drip pans.

SECTION 114. STORAGE BATTERIES

Order 1140. General.

The provisions of this section are intended to apply to all stationary installations of storage batteries using acid or alkali as electrolyte, consisting of cells connected in series, with a nominal voltage in excess of 50 volts, and connected for service where so installed. (For exception, see Order 1142B)

Nominal battery voltage shall be calculated on the basis of 2.0 volts per cell for lead-acid type and 1.2 volts per cell for alkali type. "End" or "Emergency" cells, held in reserve for connection into circuit only to maintain voltage during discharge, are not included in calculating nominal battery voltage.

Two types of cell construction are recognized in this section, viz: (1) The sealed type in which the only passage for the escape of gases from the interior of the cell is provided by a vent of effective spray-trap design adapted to trap and return to the cell, particles of liquid entrained in the escaping gases. (2) The nonsized type, in which gases escaping from the cell may carry entrained particles of liquid into the surrounding atmosphere.

Caution: Smoking, or the use of open flames, or of tools which may generate sparks, should be avoided except when cells are not actively gassing and when prior ventilation has been ample. Sparks from frictional or static electricity should be avoided as they may ignite the gas if discharged close to its source, or at the vent of a sealed-type cell during overcharging. The electrolyte of storage batteries, and spray containing electrolyte, are somewhat corrosive, particularly when concentrated by evaporation, and contact with body or clothes should be avoided.

Order 1141. Isolation.

Storage batteries should be so located as to be not accessible to other than properly qualified persons.

Order 1142. Ventilation.

A. Diffusion of Gases. Provision shall be made for sufficient diffusion of the gases from the battery to prevent the accumulation of an explosive mixture.
B. *Nonsealed Type.* Batteries of the nonsealed type shall be located in separate rooms or enclosures so arranged as to prevent the escape into other rooms of objectionable quantities of electrolyte spray. This applies also to batteries of the nonsealed type not exceeding 50 volts nominal voltage if the capacity at the 8-hour discharge rate exceeds 5 kw-hrs.

**Order 1143. Insulation.**

Cells of the nonsealed type shall be supported by suitable insulators such as glass, glazed porcelain, or oil type, or may be grouped and supported on glass or other suitable insulating trays.

Cells of the alkali type in jars of conducting material shall be supported singly, or in groups assembled in nonconducting trays, on porcelain or other suitable insulators.

Cells of the sealed type in containers of insulating material require no additional insulation except as follows:

Cells in rubber or composition containers if the total voltage exceeds 150 volts, or cells in glass jars if the total voltage exceeds 250 volts, should preferably be sectionalized into groups not exceeding these voltages, and such groups shall be mounted on trays or racks supported by suitable insulators such as glass, glazed porcelain, or oil type.

**Order 1144. Racks and Trays.**

A. *Racks.* Racks, as required in this section, refer to frames designed to support cells or trays. They shall be substantial and made of:

1. Wood, so treated as to be resistant to deteriorating action by the electrolyte; or
2. Metal, so treated as to be resistant to deteriorating action by electrolyte and provided with nonconducting members directly supporting the cells; or with suitable insulating material on conducting members; or
3. Other similar suitable construction.

B. *Trays.* Trays refer to frames such as crates or shallow boxes usually of wood or other nonconducting material so constructed or treated as to be resistant to deteriorating action by the electrolyte.

**Order 1145. Floors.**

It is recommended that the floors of battery rooms in which large batteries comprised of cells in lead-lined wood tanks are installed be of acid-resistive material, or be painted with acid-resistive paint, or otherwise be protected, where acid is likely to drop and accumulate.

**Order 1146. Wiring in Battery Rooms.**

Wiring shall be in accordance with the requirements of Part 3, Volume 2 (storage batteries).

---

Order 1147. Guarding Live Parts in Battery Rooms.

A. *Guarding.* The arrangement of cells and connections shall be such that any two current-carrying parts between which a voltage exceeding 150 volts exists shall be properly guarded if the parts are otherwise so exposed that persons are liable to make accidental contact with both at the same time.

B. *Bare Conductors.* No bare conductor of more than 150 volts to ground shall be placed in any passageway, unless guarded or isolated by elevation.

C. *Details of Guards.* Required guards shall comply with Order 1134.

**Order 1148. Illumination for Battery Rooms Enclosing Batteries of the Nonsealed Type.**

A. *Type of Lamp.* Storage-battery rooms, in addition to daylight which is desirable when available, should be lighted only by incandescent electric lamps in keyless porcelain or composition sockets, controlled from outside the battery room if practicable.

It is recommended that portable lamps be used only in keyless sockets enclosed in holders provided with substantial guards to prevent lamp breakage and be provided with "hard-service" cord.

B. *Heating Appliances.* Heating appliances with open flames or exposed incandescent resistors shall not be installed.

SECTION 115. TRANSFORMERS, INDUCTION REGULATORS, Rheostats, Ground Detectors, and Similar Equipment


A. *Short-circuiting.* Secondary circuits of current transformers, including constant-current and instrument transformers, shall be provided with means (such as permanent connections for jumpers) for short-circuiting them which can be readily connected while the primary is energized and which are so arranged as to permit the removal of any instrument or other device from such circuits without opening the circuits.

B. *Protection When of More than 7,500 Volts.* Where primaries are of more than 7,500 volts, secondary circuits unless otherwise adequately protected from injury or contact of persons, shall be in conduit effectively grounded.


The secondary circuits of all instrument transformers shall be permanently grounded unless the circuits are installed, guarded, and plainly identified as required for the high-voltage circuits of the transformers, in accordance with Order 1160.

Note: This will sometimes require marking to distinguish such a low-voltage circuit from others with which it is associated, but which are protected by ground connections.
Order 1152. Grounding Transformer Cases.

The metal case or exposed frame of each transformer, reactor, induction regulator, and similar equipment, which is located where dampness or flammable gas normally exists, or which is connected to a circuit operating at more than 150 volts, shall be effectively grounded.

Exceptions: Exception is permissible in accordance with Order 1135B in locations free from flammable gas, where the entire transformer is isolated or guarded as required for the highest voltage circuit connected with the transformer, and is plainly and conspicuously identified as of that voltage.

Order 1153. Location and Arrangement of Power Transformers.

If located outdoors, transformers shall be installed in accordance with paragraph A, B, or C below; if located indoors, or in sidewalk vaults communicating with the interior of the building, they shall be installed in accordance with paragraph D, E, or F below.

A. On Poles. Transformers may be mounted on a pole or on a pole structure, in compliance with the rules of Part 2.

B. On Walls. If permitted by local authority, a transformer may be mounted on the exterior wall of a building, in compliance with the rules of Part 2.

C. Enclosed. A transformer may be enclosed in an outdoor enclosure such that unauthorized persons cannot readily come in contact with any part of the casing or wiring.

D. Indoors, Combustible Liquid. A transformer immersed in a liquid that will burn, and located in a station, should be provided with sills to confine any escaping liquid, or with suitable arrangements for draining. If located in a building used for other than station purposes, and the amount of such liquid is considerable, the transformer should be placed in a suitable transformer vault which is ventilated. Such a vault shall be accessible to authorized persons only.

E. Indoors, Incombustible Liquid. A transformer rated in excess of 25 kw.-a. and immersed in a liquid that will not burn shall be furnished with a pressure-relief vent. If installed inside a building used for other than station purposes and not well ventilated, (1) the transformer shall be furnished with a means for absorbing any gases generated by arcing inside the case, or (2) the pressure-relief vent shall be connected to a chimney or flue which will carry such gases outside the building.

F. Indoors, Other Types. Other types of transformers, such as air-cooled transformer, or small transformers (25 kw.-a. or less) immersed in a liquid that will not burn, may be installed in stations or, if properly enclosed or guarded, in buildings used for other than station purposes.


Rheostats shall be not less than 1 foot from combustible material or separated therefrom by a slab or panel of noncombustible, nonabsorptive material of suitable thickness, not less than one-half inch, somewhat larger than the rheostat, and secured in place by bolts independently of the rheostat supports.

Rheostats or resistance devices shall not be placed where spattering molten metal due to high temperature in the rheostat may fall upon flammable material or spaces frequently occupied by persons.

Rheostats or resistance devices exposed to excessive dust or flyings should preferably be installed in suitable cabinets or equipped with dust-tight side and face plates. (For installation in hazardous locations see Order 1197)

Order 1155. Ground Detectors.

One or more reliable means of ground detection shall be available for every station supplying circuits which are not effectively grounded in accordance with Section 105.

SECTION 116. CONDUCTORS

Order 1160. Electrical Protection.

A. Overcurrent Protection Required. Conductors shall be suitable for the location, use, and voltage. Conductors should be protected against excessive heating by the design of the system or by suitable fuses or automatic circuit-breakers except as provided in Order 1175.

B. Fuses in Grounded Conductors. Conductors normally grounded for the protection of persons shall be arranged without fuses or automatic circuit-breakers interrupting their continuity between the source of electrical supply and the point at which the ground conductor is attached, unless the circuit-breaker opens all conductors of the circuit with one operation.

C. Circuits Exposed to Higher Voltages. If exposed through transformer windings or outdoor circuits to higher voltages, circuits of less than 750 volts shall be isolated or grounded unless in suitable cable with grounded metal sheath, placed in grounded conduit or other suitable duct or identified and guarded as required for conductors of the highest voltage to which they are exposed.

Order 1161. Protection Against Mechanical and Thermal Damage.

A. Protection Against Injury. Where exposed to mechanical injury suitable casing, armor, or other means shall be employed to prevent injury or disturbance to conductors, their insulation, or supports.

B. Flame Proofing. Where conductors with insulating coverings are closely grouped and any one is liable to damage from near-by conductors (as sometimes on the rear of switchboards or in cableways) they shall have a substantial flameproof outer covering.
Flame proofing shall be stripped back on all conductors a sufficient distance from the terminals to give the necessary insulation for the voltage of the circuit on which the conductor is used.

C. Protection Against Contact. Large conductors liable to be torn from their supports by the forces to which they are subjected (as by the magnetic fields produced) shall be so supported that they cannot come in contact with the surfaces along which they are run if uninsulated or with other conductors and equipment.

Note: This applies in particular to generator, leads and conductors liable to large short-circuit currents.

D. Conductors Between Generators and Outside Lines. Conductors between generators and outside lines shall be accessible and supported on approved noncombustible, nonabsorptive insulators or placed in approved cable, metal conduit, tile, or other fireproof ducts.

E. High Temperatures. Insulated conductors exposed to excessive temperatures shall have insulation which remains effective and does not rapidly deteriorate under such conditions.

Order 1162. Isolation.

All conductors of more than 750 volts, and ungrounded bare conductors of more than 150 volts, shall be isolated by elevation or guarded in accordance with Order 1124, so that no person can inadvertently come in contact with them; provided that bus and bus structures and line connections thereto may be installed in accordance with Order 1126, in suitable locations specially arranged for such purposes.

Order 1163. Guarding Conductors.

A. Metal Sheathed Cable Outlets of More Than 750 Volts. The insulation of the several conductors of multiple-conductor cable, where leaving the metal sheath at outlets, shall be thoroughly protected from mechanical injury, moisture, and electrical strains by means of a pothead or equivalent method.

B. Form of Guards. Guards shall comply with Order 1124.

Order 1184. Guarding in Hazardous Locations.

A. Rigid Steel Conduit. Conductors in locations where flammable gas normally exists shall be in metal conduit. All fittings and outlets of such conduit shall be electrically and mechanically continuous with the conduit or metal sheath, and the conduit shall be sealed to prevent entrance of gases. (See Order 13-5005).

Note: This rule does not apply to conductors of large section which obviously cannot be placed in conduit, such as copper bars connecting large cells with shunt-cell switches. This rule does not apply to adequately ventilated locations.

B. Insulating Supports. Conductors in damp locations, if neither in conduit nor in waterproof metal sheaths in other suitable ducts, shall be effectively isolated and supported on a suitable type of insulator.

Order 1165. Taping Ends and Joints.

Ends and joints of insulated conductors, unless otherwise adequately guarded, shall have equal insulating covering with other portions of the conductor.

Order 1166. Wiring for Illumination.

Wiring installed for the illumination of the station should be installed and protected as required for similar utilization equipment and conductors in Part 3 of the code.

SECTION 117. FUSES, CIRCUIT-BREAKERS, SWITCHES AND CONTROLLERS

Order 1170. Accessible and Indicating.

A. Arrangement. All switches, fuses, automatic circuit-breakers, starting rheostats and other control devices shall be readily and safely accessible to authorized persons, unless remotely controlled. They shall be so arranged or marked as to identify the equipment controlled by them, and (except fuses) shall indicate whether they are open or closed.

B. Accidental Closing. Switches shall be so installed as to minimize the danger of accidental operation, and where practicable so that gravity cannot close them; such switches as may tend to close by gravity shall be provided with a proper latch or stop block to prevent accidental closing. Where practicable, the blades of knife switches should be dead when the switches are open.

Order 1171. Oil Switches.

Oil circuit-breakers and oil switches shall, wherever practicable, be installed from other types of switches, and other electrical apparatus to conform to Order 1114A.

Remote control of switches and circuit-breakers shall be used on circuits of more than 7,500 volts, or when they may be subject to large short-circuit values.

Note: Remote control may be mechanical, electrical, or other type. It is not intended to prohibit the use of switches and circuit-breakers operated manually by means of levers or poles from a remote position (See note in Order 1114 for conditions usually applying to electrical systems).

Order 1172. Where Switches Are Required.

Suitable disconnectors, switches or circuit-breakers which may be manually operated shall be inserted in all leads to all supply equipment and all outgoing supply circuits, except as listed below.

Exceptions: 1. Where two or more pieces of electrical supply equipment or supply lines are operated as a single unit no switch is necessarily required between them.

2. Switches are not required in transformer vaults except as may be deemed necessary by the engineer in charge to meet operating requirements.
Order 1173. Switches or Other Grounding Devices.

It is recommended that switches or other suitable means be provided, where practicable, to facilitate short-circuiting and grounding equipment or lines for which the operating rules (See Orders 1423 and 1424 of this code), require grounding to protect workmen. (See Order 1123C)

Order 1174. Capacity of Switches and Disconnectors.

A. Suitability. Switches used otherwise than as disconnectors shall be of suitable voltage and ampere rating for the circuit on which they are installed and should preferably be marked with the current which they can safely interrupt.

Disconnectors shall be of suitable voltage and ampere rating for the circuit on which they are installed.

It is recommended that disconnectors be marked with a warning against opening when carrying load. Where a group of disconnectors is contained in one room or compartment, a single conspicuous sign may be sufficient.

B. Locking. Remotely controlled switches, oil switches, and disconnectors shall be so arranged that they can be secured in the open position or plainly tagged to prevent careless closing while work is being done on equipment controlled by them.

It is important that the control circuit be tagged or provided with a positive disconnecting means near the apparatus to prevent accidental operation of the mechanism.

For switches and disconnectors the accidental opening of which may cause hazard, similar arrangements are desirable for retaining them in closed position.

Locking is recommended rather than blocking wherever parts of equipment are remote from the point of control.

C. Air Breaks. Unless a switch operating on a circuit between 750 and 7,500 volts makes an air break, it is recommended that there shall be installed between it and the source of energy supply a suitable air or oil break disconnect or equivalent device having an air or oil gap suitable for the operating voltage of the circuit.

An air-break switch or air-break disconnector shall be inserted in each conductor between electrical supply equipment or lines and sources of energy of more than 7,500 volts, if the equipment or lines may have to be worked on without protective grounding while the sources may be alive (for lightning arresters see Order 1191).

D. Alignment. Knife switches shall maintain such alignment under service conditions that they can be closed with a single unhesitating motion.

Order 1175. Where Fuses or Automatic Circuit-breakers Are Required.

All circuit leads to motors, constant-potential generators, transformer primaries, and station auxiliaries, and all outgoing circuits shall be protected from excessive current by suitable fuses or automatic circuit-breakers, except as indicated below.

Fuses and automatic circuit-breakers may be omitted from the following:

1. A motor-driven generator or rotary converter when the supply leads to such apparatus are already protected by fuses or automatic circuit-breakers.

2. Ground conductors.

3. Circuits for field excitation.

4. Leads of alternating-current generators.

5. Leads connecting two or more pieces of electrical supply equipment operated as a single unit.


7. Leads of series transformers.

8. Leads of potential transformers or other circuits, the opening of which may cause greater hazard to life or property through interruption of service.

Order 1176. Disconnection of Fuses Before Handling.

Fuses in circuits of more than 150 volts or more than 60 amperes shall be arranged in one of the following ways:

1. So that the fuses are necessarily disconnected from all sources of electrical energy before they can be touched.

2. So that the fuses can be disconnected from all sources of electrical energy by a suitable switch.

3. So that the fuses can be conveniently handled by means of insulating handles or portable appliances provided for the purpose.

Exception: Circuits of less than 150 volts and less than 60 amperes capacity are exempted from the provisions of this order.

The use of insulating gloves and mats is permissible on circuits not exceeding 750 volts.

Order 1177. Arcing or Suddenly Moving Parts.

A. Protection from Burns. Fuses and circuit-breakers shall, as far as possible, be so located and shielded that persons will not be burned by their operation.

B. Protection Against Moving Parts. Handles or levers of circuit-breakers and similar parts which may move suddenly in such a way that persons in the vicinity are liable to be injured by them, shall be guarded or isolated.
Order 1178. Grounding Noncurrent-carrying Metal Parts.
Exposed noncurrent-carrying parts of switch and fuse cases, levers, and other similar parts to which leakage is liable to occur from live parts, and thereby create a hazard, shall be effectively grounded in accordance with Order 1123.

Exception: Minor parts, such as ferrules of knife switches, which are not liable to become alive, are excepted.

Switches, fuses, and automatic circuit-breakers shall be isolated or guarded in accordance with Orders 1124 and 1125.

SECTION 118. SWITCHBOARDS
Order 1180. Location and Accessibility.
A. General Location. Switchboards shall, where practicable, be so placed that the operator will not be endangered by any live or moving parts of machinery or equipment located near the board.

They shall be so placed as to reduce to a minimum the danger of communicating fire to adjacent combustible material.

B. Spaces about Boards. The space back of the board shall be kept clear of rubbish and shall not be used for storage.

C. Accessibility. Switchboards shall be accessible to authorized operators from both front and back when the connections are on the back (see Order 1125 for working space), but may be placed against a wall when operating at not more than 750 volts with the wiring entirely on the face.

D. Arrangements. Switchboards shall have all switches so arranged that the points of control are readily accessible to the operator. Instruments, relays, and other devices requiring reading or adjustments shall be so placed that work can be readily performed from the working space.

Order 1181. Material and Illumination.
A. Material. Switchboards shall be made of noncombustible material and be kept free from moisture.

B. Illumination. In attended stations sufficient illumination shall be provided both for the front and rear of the switchboard so that the switchboard may be readily operated and instruments conveniently read. (See Order 1111)

Order 1182. Necessary Equipment.
Switchboards which control generating equipment or outgoing supply circuits shall (except in substations without regular attendance) be equipped with such instruments as are necessary to show operating conditions. (See Order 1155 for ground detectors)

Order 1183. Arrangement and Identification.
Connections, wiring, and equipment of switchboards and panelboards shall be arranged in an orderly manner, and all switches, fuses, and circuit breakers shall be plainly marked or labeled on fixed parts of equipment or arranged so as to afford ready means for identifying circuits or equipment supplied through them, in accordance with Order 1123.

Order 1184. Spacings and Barriers Against Short-circuit.
A. Bare Parts. Switchboards shall have the number of bare parts at different potentials on any panel reduced to a minimum, and these parts shall be effectively separated. Protection or separation of such parts by suitable barriers is recommended where the voltage exceeds 750.

It is recommended that such parts, including bus bars, should be so located, or provided with such insulating coverings or barriers, that parts at different potentials will not be readily short-circuited by tools or other conducting objects.

B. Fuses. Fuses should be so located as to minimize the danger, in removing or replacing them, of short-circuiting parts at different potentials by the fuses or by the hands of the operator.

Order 1185. Switchboard Grounding.
A. Frames. Switchboard frames and noncurrent-carrying parts shall be effectively grounded under the conditions and with the exceptions noted in Order 1123.

Exception: Parts of switchboards, such as name plates, screws, and similar small parts which are not liable to become alive, except under very unusual circumstances, are not considered as coming under the rule and may be left ungrounded.

B. Circuits Worked on. Where protective grounds are occasionally required on circuits for the protection of workmen, an effective ground connection shall be provided, and also suitable means for effectively and readily connecting the parts being grounded to the ground connection, in accordance with Order 1125C.

Order 1186. Guarding Live Parts on Switchboards.
A. Guards. Live parts of switchboards shall be guarded in accordance with Order 1124.

B. Plug-type Switchboards. Plug-type switchboards should, except while connections are being changed, have no current-carrying part exposed on face of boards and, if practicable, they and their plug connectors shall be so arranged where the operating voltage exceeds 150 as to have all current-carrying parts guarded so long as they are alive, even while connections are being changed.

C. Exposed Parts of More Than 7,500 Volts. No switchboard shall have current-carrying parts of more than 7,500 volts exposed (un guarded) unless these parts are effectively isolated by elevation, ex-
cept at times when occasionally left exposed by removal of covers or entrance into enclosures, such as switch and instrument-transformer cells or compartments which are ordinarily unoccupied by persons. For such parts, if exposed while alive for any purpose (including buses and disconnectors in compartments) working space shall be provided complying with the requirements under Order 1125.

Order 1187. Instrument Cases.

When mounted on switchboards, metal cases of instruments (unless isolated by elevation) operating at more than 750 volts shall be grounded or enclosed in suitable covers, which are either of grounded metal or of insulating material.

SECTION 119. LIGHTNING ARRESTERS

Order 1190. Location.

A. Where Recommended. Suitable precautions should be taken to protect station equipment against excessive lightning which might enter from associated overhead lines.

Exception: Precautions need not be taken in locations where thunderstorms are infrequent at all seasons of the year.

B. Indoors. Lightning arresters with auxiliaries when installed inside of buildings shall be located well away from all other equipment, passageways, and combustible parts of buildings. When of a type containing oil they should be installed in accordance with Order 1114.

Order 1191. Provisions for Disconnecting.

A. Air-break Disconnectors. Lightning arresters on circuits of more than 7,500 volts shall be so arranged, isolated, and equipped that they may be readily disconnected from conductors to which they are connected by means of disconnects or clamping devices operable from a safe working distance.

These disconnecting devices should be installed at a sufficient distance from all parts of the arrester equipment to make it safe to perform maintenance and inspection work on any part of the arrester.

B. Working Space. Such disconnectors, unless remotely controlled and operated, shall have the adjacent working spaces required by Order 1125 for disconnectors generally.

Order 1192. Connecting Wires.

Grounding wires shall be run as directly as possible and be of low impedance and ample current capacity. (See Section 108)

Kinks, coils, and sharp bends in the wires between the arresters and the outdoor lines shall be avoided as far as possible.

Order 1193. Grounding Frames and Cases of Lightning Arresters.

All noncurrent-carrying metal parts of arresters shall be grounded, unless effectively isolated by elevation or guarded as required for live parts of the voltage of the circuit to which the arrester is connected, and suitably identified as of that voltage, in accordance with Order 1123.

Order 1194. Guarding Live and Arcing Parts.

A. Protection from Contact or Arcing. All current-carrying parts of arresters on circuits of more than 750 volts, unless effectively isolated by elevation, shall be adequately guarded to protect persons from inadvertent contact with them, or from injury by arcing, in accordance with Order 1124.

B. Making Adjustments. Lightning arresters, unless provided with disconnectors which are always opened before work is done on the arresters, shall be so arranged that necessary adjustments are possible (without approach to current-carrying parts) through the use of effectively grounded mechanisms or suitable insulating appliances. Where charging or adjusting must be done with arresters alive, effectively grounded mechanisms or suitable insulating appliances shall always be provided.

C. Insulation of Attachments. All choke coils, gap electrodes, or other attachments, inherent to the lightning protective equipment, shall have an insulation from the ground or other conductors equal at least to the insulation demanded at other points of the circuit in the station.
PART 2
SUPPLY AND COMMUNICATION LINES

SECTION 120. SCOPE OF ORDERS AND GENERAL STATEMENTS

Note: For the intent of the rules, waivers, etc., see Order 1912.

Order 1200. Scope of Orders.

A. Extent of Application. The orders in this part of the code, namely, Orders 1200 to 1299 inclusive, apply to all supply and communication lines in overhead and underground construction, whether operated in connection with public utilities, privately or municipally owned, with industrial establishments, or otherwise.

B. Not Complete Specifications. These rules are not complete specifications but are intended to embody the requirements which are most important from the standpoint of safety to employees and the public.

C. Conformity with Good Practice. Construction should be made according to accepted good practice for the given local conditions in all particulars not specified in these Orders.

Order 1201. Minimum Requirements.

The orders state the minimum requirements for spacings, clearances, and strength of construction. More ample spacings and clearances or greater strength of construction may be provided if other requirements are not neglected in so doing.

Note: Some of these minimum values are exceeded in much existing construction; service requirements frequently call for stronger supports and higher factors of safety than the minimum requirements of these orders.

SECTION 121. GENERAL REQUIREMENTS APPLYING TO OVERHEAD AND UNDERGROUND LINES

Order 1210. Design and Construction.

All electrical supply and communication lines and equipment shall be of suitable design and construction for the service and conditions under which they are to be operated.

Order 1211. Installation and Maintenance.

All electrical supply and communication lines and equipment shall be installed and maintained so as to reduce life and fire hazards as far as practicable.

Order 1212. Accessibility.

All parts which must be examined or adjusted during operation shall be arranged so as to be readily accessible to authorized persons by the provision of adequate climbing spaces, working spaces, working facilities, and clearances between conductors.


A. When in Service. 1. Initial Compliance with Orders. Lines and equipment shall comply with these orders upon being placed in service.

2. Inspection. Lines and equipment shall be systematically inspected from time to time.

3. Tests. Lines and equipment shall be subjected, when necessary, to tests which will determine their fitness for service.

4. Record of Defects. Any defects revealed by inspection, if not promptly corrected, shall be recorded.

5. Remedy of Defects. Defective lines and equipment shall be put in good order or effectively disconnected.

B. When Out of Service. 1. Lines Infrequently Used. Supply lines and equipment infrequently used shall be inspected to see that they are in safe condition for service.

2. Lines Temporarily Out of Service. Lines temporarily out of service shall be maintained in such condition that a hazard will not be created.

3. Lines Permanently Abandoned. Lines permanently abandoned shall be removed.

Note: Overhead service drops to consumers may be disconnected without removal if the service is discontinued. This is considered good practice when it is undesirable to remove the service drop entirely.

Order 1214. Isolation, Guarding and Marking.

A. Current-carrying Parts. To promote safety to the general public and to employees not authorized to approach conductors and other current-carrying parts of electrical supply lines, such parts shall be arranged so as to be provided adequate clearance from the ground or other space generally accessible, or shall be provided with guards so as to be isolated and guarded so as not to be exposed to accidental contact by unauthorized persons.

B. Noncurrent-carrying Parts. Ungrounded metal-sheathed service cable, service conduits, metal fixtures, and similar noncurrent-carrying parts, if located in urban districts and where liable to become charged to more than 300 volts, shall be isolated or guarded so as not to be exposed to accidental contact by unauthorized persons.

As an alternative to isolation or guarding, grounding of certain noncurrent-carrying parts as permitted by Order 1215B and Order 1280A-4 may be used.

C. Marking of Poles Carrying High Voltages. Section 196.67 of the Wisconsin Statutes provides the following:
Warning signs. (1) Every corporation, company or person constructing, operating or maintaining an electric transmission line with a voltage of six thousand or more between conductors or between conductors and the ground shall place warning signs, not less than four feet nor more than six feet from the ground, upon all poles or other structures supporting such line when within one hundred feet of school grounds; and when within one hundred feet of any place where such line crosses a public highway; and when within any city or village.

(2) Every such sign shall be stenciled on such pole or structure in red or black letters not less than two inches high on a background of white and shall read "Danger - High Voltage." Such stencils shall be furnished by the commission at cost to public utility companies.

(3) Any corporation, company or person violating any of the provisions of this section shall be fined not less than fifty dollars nor more than three hundred dollars for each offense.

Note: This section of the statute is interpreted to mean distribution as well as transmission line poles, also because of the difficulty of maintaining stenciled signs on a creosoted surface, metal signs with the same wording as specified above may be used on poles which are creosoted farther than 6 feet above the ground line.

Order 1215. Grounding of Circuits and Equipment.

A. Methods. The methods to be used for effective grounding for lightning arresters of supply lines, for circuits, for equipment and for wire raceways are given in the introduction. The methods to be used for grounding of lightning arresters of communication lines are specified in Order 1200, Vol. 2.

B. Parts to be Grounded. Metal conduits, cable sheaths, and frames, cases, and hangers of equipment shall be effectively grounded.

Exception 1: This order does not apply when such parts are guarded from accidental contact by unauthorized persons.

Exception 2: This order does not apply where such parts are 6 feet or more above the ground.

Exception 3: This order does not apply to metal conduit and cable sheaths enclosing communication conductors, or supply conductors of not more than 300 volts, provided such conduit and sheaths are not exposed to probable contact with circuits of more than 300 volts.

Recommendation: It is recommended that supply cables have the sheath bonded to any conduit extending above the ground surface.

Note: Metal conduit above ground which contains extensions from metal-sheathed underground cable is considered to be sufficiently grounded by the cable sheath, provided such sheath is in good contact with the earth or is connected to a good ground. (For method of grounding see introduction)

C. Use of Ground as Part of Circuit. Supply circuits shall not be designed to use the ground normally as the sole conductor for any part of the circuit.

SECTION 122. RELATIONS BETWEEN VARIOUS CLASSES OF LINES

Order 1220. Relative Levels.

A. Standardization of Levels. The levels at which different classes of conductors are to be located should be standardized where practicable for any given community by agreement of the utilities concerned.

Note: This practice facilitates the extension of lines and promotes the safety of the public and workers by permitting the relative levels and required clearances to be readily obtained on jointly or commonly used poles as well as at crossings and conflicts.

B. Relative Levels—Supply and Communication Conductors. 1. Preferred Levels. Where supply and communication conductors cross each other or are in conflict, or are located on the same poles or towers, the supply conductors shall preferably be carried at the higher level.

Exception: This does not apply to trolley feeders which may be located for convenience approximately at the level of the trolley contact conductor.

Note: Supply lines generally use larger conductors than communication lines so there is less liability of contact between the two if the supply conductors are located in the upper position. This relative location also avoids the necessity of workmen on communication conductors passing through supply conductors and working above them and avoids the necessity of increasing the grade of construction required for communication conductors.

2. Minor Extensions. In localities where the practice of placing conductors of communication circuit for public use above supply conductors has been generally established, minor extensions may be made in either system, keeping the conductors in the same relative position. These extensions should not continue beyond a location at which it becomes practicable to change to the arrangement standardized by these orders.
3. Special Construction for Supply Circuits, the Voltage of Which Is 550 Volts or Less and Carrying Power not in Excess of 3,200 Watts. Where all circuits are owned or operated by one party or where cooperative consideration determines that the circumstances warrant and the necessary coordinating methods are employed, single-phase alternating-current or two-wire direct-current circuits carrying a voltage of 550 volts or less, with transmitted power not in excess of 3,200 watts, when involved in the joint use of poles with communication circuits, may be installed in accordance with footnote 1 of Table 1 in Order 1232 A, and footnote a of Table 11 in Order 128, A, 1 under the following conditions:

(a) That such supply circuits are of wire having a good grade of commercial double-braid weatherproof covering not smaller than No. 8 AWG medium hard-drawn copper or its equivalent in strength, and the construction otherwise conforms with the requirements for supply circuits of the same class.

(b) That the supply circuits be placed on the end and adjacent pins of the lowest through signal crossarm and that a 30-inch climbing space be maintained from the ground up to a point at least 24 inches above the supply circuits. The supply circuits shall be rendered conspicuous by the use of insulators of different form or color from others on the pole line or by stenciling the voltage on each side of the crossarm between the pins carrying each supply circuit, or by indicating the voltage by means of metal characters.

(c) That there shall be a vertical clearance of at least 2 feet between the crossarm carrying these supply circuits and the next crossarm above. The other pins on the crossarm carrying the supply circuits may be occupied by communication circuits used in the operation or control of a signal system or other supply system if owned, operated and maintained by the same company operating the supply circuits.

(d) That such supply circuits shall be equipped with arresters and fuses installed in the supply end of the circuit and where the signal circuit is alternating current, the protection shall be installed on the secondary side of the supply transformer. The arresters shall be designed so as to break down at approximately twice the voltage between the wires of the circuit, but the break-down voltage of the arrester need not be less than 1,000 volts. The fuses shall have a rating not in excess of approximately twice the maximum operating current of the circuit, but their rating need not be less than 10 amperes. The fuses likewise shall in all cases have a rating of at least 600 volts, and where the supply transformer is a step-down transformer, shall be capable of opening the circuit successfully in the event the transformer primary voltage is impressed upon them.

(e) Such supply circuits when enclosed in effectively grounded metal-sheathed cable, or other cables carried on effectively grounded messenger, may be carried on a pole below communication attachments, with not less than 2 ft. vertical separation between the supply cable and the lowest communication crossarm. Communication circuits other than those used in connection with the operation of the supply circuits shall not be carried in the same cable with such supply circuits.

(f) Where such supply conductors are carried below communication conductors, transformers and other apparatus associated therewith shall be attached only to the sides of the crossarm in the space between and at no higher level than, such supply wires.

(g) Lateral runs of such supply circuits carried in a position below the communication space shall be protected through the climbing space by wood molding or equivalent covering, or shall be carried in multiple-conductor cable having a suitable substantial insulating covering, and such lateral runs shall be placed on the under side of the crossarm.

C. Relative Levels—Supply Lines of Different Voltage Classifications (as classified in Table 11). 1. At Crossings or Conflicts. Where supply conductors of different voltage classifications cross each other or are in conflict, the higher-voltage lines shall preferably be carried at the higher level.

2. On Poles Used Only by Supply Conductors. Where supply conductors of different voltage classifications are on the same poles, relative levels should be as follows:

(a) Where all circuits are owned by one utility, the conductors of higher voltages should generally be placed above those of lower voltage.

Note: These relative levels will often avoid the necessity of increasing the grade of construction for crossarms, pins, and conductor fastenings of the lower voltage conductors.

(b) Where different circuits are owned by separate utilities, the circuits of each utility may be grouped together and one group of circuits may be placed above the other group provided that the circuits in each group are located so that those of higher voltage are at the higher levels and that either of the following conditions is met:

1. A vertical spacing of not less than 4 feet (or 6 feet where required by Table 11, Order 1238A-1), is maintained between the nearest line conductors of the respective utilities (this space to be identified if necessary as a division space).

2. Conductors of a lower voltage classification are at a higher level than those of a higher classification only where on the opposite of the pole.

Order 1221. Avoidance of Conflict and Cooperation to Avoid Hazard.

A. Two parallel pole lines, either of which carries supply conductors, shall where practicable be so separated from each other that neither conflicts with the other. If this is impracticable, then the
conflicting line or lines shall be built of the grade of construction required by section 124 for a conflicting line or the two lines shall be combined in a single pole line.

B. Under certain circumstances the proximity of supply lines to communication circuits may produce undesirable effects which may become hazardous. Because of the varied nature of the influence it is difficult to define limits of voltage, parallelism, etc., which will apply in all cases, but by means of cooperation between the supply and communication interests, the companies themselves can doubtless work out the problem in such a way that a serious hazard will not result.

In order to aid in keeping these effects at a minimum, it is expected that the utilities or parties responsible for the extension or change of electric or communication facilities will cooperate by notifying each other of contemplated extensions; or changes in location, operation, or voltage.

All the utilities or companies affected should determine in conference just what limits of line characteristics, separation and parallelism will be allowed without notification to each other. However in the absence of such an agreement any company before building a line within 500 feet of the line of other companies shall give notice to all companies having lines within the given distance. Such notices will give all companies the opportunity to take such steps for the protection of their property as the law provides.


A. Advantages. Joint use of poles under suitable conditions and with certain types of circuits offers many advantages and promotes safety.

B. Cooperative Study. Joint use involves contractual relations between utilities, consideration of service requirements, and economies as well as safety. It, therefore, requires cooperative study by the utilities concerned.

C. Conditions Under Which Joint Use Is Desirable. In the case of local or distribution circuits along the same highway or similar right of way, where, under the provisions of section 124 applying to joint use, grade C construction or less would be required, joint use is generally preferable to separate pole lines unless the number of conductors is very large or the character of the circuits makes joint use undesirable.

Where circuits other than those mentioned above are involved, the choice between joint use of poles and separate pole lines shall be determined through cooperative consideration, by the utilities concerned, of all the factors involved, including the character of circuits, the total number and weight of conductors, tree conditions, number and location of branches and service drops, availability of right of way, etc. Where such joint use is mutually agreed upon, it shall be subject to the appropriate grade of construction as specified in section 124. Where such joint use is not employed, separate lines as specified in Order 1223 shall be used.

In any event, joint use is preferable to separate lines where it would be impracticable to avoid an overlaid conflict with separate lines.

Order 1223. Separate Pole Lines.

Where two separate pole lines are to be used, one of which carries supply conductors and the other communication conductors, they shall be separated, if practicable, so that neither conflicts with the other, but if within conflicting distance, they shall be separated as far as practicable and shall be built of the grade of construction required by section 124.

Order 1224. Approval of Conflicts and Joint Use of Facilities.

The following section of the Wisconsin Statutes applies to the joint use of facilities. The Public Service Commission also has other orders, not included in this code or referred to in the following section of the Statutes, which require certain lines and construction projects to be approved.

196.04 Facilities granted other utilities; physical telephone connections; petition; investigation. (1) Every public utility and every person having conduits, subways, poles, towers, transmission wires or other equipment on, over or under any street or highway, shall for a reasonable compensation, permit the use of the same by any public utility, whenever public convenience and necessity require such use, and such use will not result in irreparable injury to the owner or other users of such equipment, nor in any substantial detriment to the service to be rendered by such owners or other users; and every utility for the conveyance of telephone messages shall permit physical connections to be made, and telephone service to be furnished, between any telephone system operated by it, and the telephone toll line operated by another public utility, or between its toll line and the telephone system of another public utility, or between its toll line and the toll line of another public utility, or between its telephone system and the telephone system of another public utility, whenever public convenience and necessity require such physical connections, and such physical connections will not result in irreparable injury to the owners or other users of the facilities of such public utilities, nor in any substantial detriment to the service to be rendered by such public utilities. The term "physical connection," as used in this section, shall mean such number of trunk lines or complete wire circuits and connections as may be required to furnish reasonably adequate telephone service between such public utilities.

(2) In case of failure to agree upon such use or the conditions or compensation for such use, or in case of failure to agree upon such physical connections, or the terms and conditions upon which the same shall be made, any public utility or any other person interested may apply to the commission, and if after investigation the commission shall ascertain that public convenience and necessity require such use or such physical connections, and that such use or such physical
connections would not result in irreparable injury to the owner or other users of such equipment or of the facilities of public utilities. It shall be the duty of the association organized under chapter 185 to furnish telegraph, telephone, service or transmit heat, power or electric current to the public or for public purposes, and any such association shall be permitted and such physical connections so ordered shall be made, and such conditions and compensation so prescribed shall be the lawful conditions and compensation for such use, and the lawful terms and conditions upon which such physical connections shall be made, observed, followed and paid. Any such order may be, from time to time, revised by the commission.

SECTION 123. CLEARANCES

The following sections of the Wisconsin Statutes apply to clearances, etc. Where the code requires greater clearance than the Statutes the code requirements shall be used.

86.16 Electric lines on highways; place of poles; penalty. (1) Any person, firm or corporation may, with the written consent of the town board, but subject to the approval of the state highway commission, construct and operate telegraph lines, telephone or electric lines for the purpose of transmitting messages, light or power along or within the limits of any highway.

Poles and wires shall be in such a manner as to not interfere with the use of such highway by the public nor with the use of the adjoining land by the owner thereof; and all wires shall be not less than eighteen feet above the ground at all crossings, and not less than fourteen feet above the ground at all other places.

(3) No tree shall be cut, trimmed or the branches thereof cut or broken in the construction or maintenance of any such line without the consent of the owner of the tree.

(4) Any person erecting any telephone, telegraph, electric light or other pole or stringing any telephone, telegraph, electric light or other wire in violation of the provisions of this section shall forfeit a sum not less than ten nor more than fifty dollars.

(5) Any person, firm or corporation whose written application for permission to construct such lines within the limits of any highway of any town has been refused, or when such application shall have been on file with the town clerk for twenty days and no action shall have been taken thereon, such applicant may file with such town clerk a notice of appeal to the state highway commission. The town clerk shall thereupon make return of all the papers and action of the board to the state highway commission, and such commission shall proceed to hear and try and determine such appeals on ten days' notice to the town board, and the applicant. The order entered by the commission shall be final.

120.17 Transmission lines; privileges; damages. (1) Right of Way Por. Any domestic corporation organized to furnish telephone, service or transmit heat, power or electric current to the public or for public purposes, and any such corporation shall be permitted and such physical connections so ordered shall be made, and such conditions and compensation so prescribed shall be the lawful conditions and compensation for such use, and the lawful terms and conditions upon which such physical connections shall be made, observed, followed and paid. Any such order may be, from time to time, revised by the commission.

(2) Not to Obstruct Public Use. But no such line or system or any appurtenance thereto shall at any time obstruct or incommodate the public use of any highway, bridge, stream or body of water.

(3) Abandoned Lines Removed. The public service commission after a public hearing as provided in section 196.25, and subject to the right of review as provided in chapter 227, shall by order declare any line to be abandoned or discontinued, if the facts warrant such finding, or all the property included in the line or in the right-of-way, and the property shall be removed from the premises and the owner thereof shall be entitled to receive therefrom the value of the property.

(4) Location of Poles. In case of dispute as to the location of poles, pipes or conduits, the commissioners appointed in condemnation proceedings under chapter 32 shall determine the location. In no case, except where the owner consents, shall poles be set in front of or upon any residence property or in front of a building occupied for business purposes, unless the commissioners find that the same is necessary and the court may review the finding.

(5) Limitation of Action. The proceedings authorized in chapter 32 shall not be taken nor other action commenced against the corporation in respect to its rights to use or possess lands, unless begun within six years after the commencement of such use or possession.

(6) Trees Protected, Penalties. Any such corporation which shall in any manner destroy, trim or injure any shade or ornamental trees along any such lines or systems, cause any damage to buildings, fences, crops, live stock or other property, except by the consent of the owner, or after the right so to do has been acquired, shall be liable to the person aggrieved in three times the actual damage sustained, besides costs.

(7) Municipal Franchise Required. No lighting or heating corporation shall have any right hereunder in any city or village until it has obtained a franchise or written consent for the erection or installation of its lines from such city or village.
180.18 Wires over railroads. (1) All wires strung over any steam railroad shall be tied to insulators fastened to double crossarms attached to a pole at each side of the crossing. The poles if of wood shall not be less than six inches in diameter at the top (if of other materials at least the equivalent strength thereof), set not less than five feet in the ground, securely guyed, and, unless the railroad right of way is over one hundred feet in width, shall be set not more than one hundred feet apart. The crossarms shall be attached to the poles by machine bolts, and braced by at least one iron brace from each crossarm to the pole. All wires shall be maintained not less than twenty-five feet above the rails, except street railway trolley wires, which shall be maintained not less than twenty-two feet above the rails.

(2) Any person ordered by the public service commission to change its wires so as to conform to this section failing to comply with such order within ten days from the service thereof, shall forfeit twenty-five dollars, and a like forfeiture for every additional ten days of noncompliance with the order, unless a greater length of time to make such change shall be granted.

Order 1230: General.

A. Application. This section covers clearances, including separations and climbing spaces, involving poles and wires. Clearances of lamps from pole surfaces, from spaces accessible to the general public, and height above ground are covered in Order 12966.

B. Constant-current Circuits. The clearances for constant-current circuits shall be determined on the basis of their nominal full-load voltage.

C. Supply Cables. As far as clearances are concerned, effectively grounded continuous metal-sheathed supply cables of all voltages and any supply cables supported on effectively grounded messenger, are classified the same as open supply wires of 0 to 750 volts.

D. Neutral Conductors. Neutral conductors of supply circuits shall have the same clearances as the phase wires of the circuit with which they are associated, except that neutral conductors which are effectively grounded throughout their length in the manner prescribed in Order 10518 (5) and associated with circuits operating at less than 8,750 volts to ground may have the same clearances as circuits 0 to 750 volts.

E. Maintenance of Clearances. The clearances required by this section shall be maintained at the specific values under the basic conditions stated for the various clearance situations.

Order 1231. Horizontal Clearances of Supporting Structures from Other Objects.

No pole or attachment shall obstruct or inconvenience the public use of any highway, bridge, stream, or body of water.

Poles, towers, and other supporting structures and their guy and braces shall have the following horizontal clearances from other objects. The clearance shall be measured between the nearest parts of the objects concerned.

A. From Fire Hydrants. Not less than 3 feet.

Recommendation: Where conditions permit, a clearance of not less than 4 feet is recommended.

B. From Street Corners. Where hydrants are located at street corners, poles and towers should not be set so far from the corners as to make necessary the use of flying taps inaccessible from the poles.

C. From Curbs. Not less than 6 inches measured to the street side of the curb if practicable.

D. From Railroad Tracks. Where railroad tracks are paralleled or crossed by overhead lines, the poles and their guys and braces shall, if practicable, be located not less than 12 feet from the nearest track rail.

Exception 1: At sidings a clearance of not less than 7 feet may be allowed, provided sufficient space for a driveway be left where cars are loaded or unloaded.

Exception 2: Support for overhead trolley contact conductors may be located as near their own track rail as conditions require. If very close, however, permanent screens on cars will be necessary to protect passengers.

Note: The parties concerned shall cooperate with each other in locating poles, signs, signals, etc., along tracks so that the view of all signals and signs will be as clear as practicable.

E. Protection from Fires. Poles and towers should be so placed, guarded, and maintained, as to be exposed as little as practicable to brush, grass, rubbish, or building fires.

F. Lines in Trees. Supply wires unless effectively insulated shall not be run through fruit trees which must be climbed to gather the fruit.

Order 1232. Vertical Clearance of Wires Above Ground or Rails.

The vertical clearance of all wires above ground in generally accessible places or above rails shall be not less than the following:

A. Basic Clearances. The clearances in Table 1 apply under the following conditions:

- Temperature of 60°F.
- No wind.
- Final unloaded sag.
- Fixed conductor supports.
- Span lengths 0-150 feet for 3-strand conductors, each wire of which is 0.09 inch or less in diameter.
- Span lengths 0-175 feet for other types of wire.
- Voltage 0 to 150,000 volts.

For other conditions see Order 1232. For definition of voltage see fourth paragraph, definition 134, Order 1232.
### TABLE 1

Minimum Vertical Clearance of Wires (In Feet) Above Ground or Rails
Supply Wires Include Trolley Feeders

<table>
<thead>
<tr>
<th>Location of Wires and Cables</th>
<th>Open Supply Line Wires, Arc Wires, and Service Drops (a)</th>
<th>Trolley Contact Conductors and Associated Span or Messenger Wire (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grounded (b) Supply Conductors</td>
<td>Grounded Communications Wires, Supply Conductors, and Service Wires</td>
</tr>
<tr>
<td></td>
<td>0 to 750 Volts (c)</td>
<td>0 to 750 Volts</td>
</tr>
<tr>
<td></td>
<td>750 to 15,000 Volts</td>
<td>15,000 to 25,000 Volts</td>
</tr>
<tr>
<td></td>
<td>25,000 to 75,000 Volts</td>
<td>75,000 to 100,000 Volts</td>
</tr>
<tr>
<td></td>
<td>100,000 to 150,000 Volts</td>
<td>100,000 to 150,000 Volts</td>
</tr>
</tbody>
</table>

- **Over track rails of railroads (c)**
  - Grounded: 28
  - Open: 28

- **At crossings over streets, alleys, or roads (d)**
  - Grounded: 18
  - Open: 18

- **Along streets or alleys in urban districts (e)**
  - Grounded: 18
  - Open: 18

- **Along roads in rural districts (f)**
  - Grounded: 14
  - Open: 14

- **At crossings over private driveways used for general farm purposes**
  - Grounded: 14
  - Open: 14

- **Over open areas used for general farm purposes**
  - Grounded: 14
  - Open: 14

- **Over fences or otherwise guarded rights of way in which only authorized persons are permitted (g)**
  - Grounded: 14

- **Over lakes, streams, or ponds where boats are operated or used for fishing**
  - Grounded: 10

- **Over spaces or ways not covered above**
  - (h) In rural districts (p)
  - (i) In urban districts (p)

---

### FOOTNOTES FOR TABLE 1

1. Including supply line guys where effectively grounded or insulated against the highest voltage to which they are exposed. Note: No clearance from ground is required for anchor guys, not crossing streets, driveways, roads or pathways nor for anchor guys provided with traffic guards and paralleling sidewalk curbs.
2. This relates to supply cables of all voltages having effectively grounded continuous metal sheath cables or messengers.
3. Conductors which are grounded in accordance with Order 1611(B)(5) and are associated with circuits of 750 to 4,750 volts, may have the clearances specified for open supply line wires of 0 to 750 volts to ground.
4. Where subways, tunnels, or bridges require it, less clearances above ground or rails than required by Table 1 may be used locally. The trolley contact conductor should be graded very gradually from the regular construction down to the reduced elevation.
5. In the case of electrified railroads served by overhead trolley conductors, these clearances do not apply.
6. This clearance may be reduced to 25 feet where paralleled by trolley contact conductor on the same street or highway.
7. These requirements apply only to wires within the limits of public highways or other public rights of way for traffic.
8. This clearance may be reduced to 14 feet where the conductors are located relative to ditches, embankments, etc., so that the ground underneath will never be traversed by vehicles.
9. These clearance requirements do not apply in transformer or substation areas which are so fenced or guarded that they are never accessible to other than authorized persons. (See Order 1124).
10. This clearance may be reduced to 8 feet for guys, cables, messengers and communication wires limited to 160 volts, where the ground underneath the wires or cables is accessible to pedestrians only.
11. This clearance may be reduced to 12 feet for supply service drops limited to 800 volts and to 10 feet for supply service drops limited to 150 volts.
12. This clearance may be reduced to 10 feet for supply circuits of 550 volts or less, with transmitted power of 2,250 watts or less which are run in accordance with the provisions specified in Order 1230(B).
13. This clearance may be reduced by 2 feet for distribution circuits in rural districts not along or across the yard or space near to the buildings of a farmstead, residence or school, if the wires are located relative to embankments, marshes, woods, etc., so that the ground underneath is not likely to be traveled by high loaded vehicles.
14. Trolley contact conductors for industrial railways when not along or crossing roadways may be placed at a less height if suitably guarded.
15. These clearances also apply to the diagonal distance between the conductors and terrain of rapidly changing contour where surface can be readily walked on.
16. See Order 1238E for street lamps and drops.
17. Because of statutory requirement these clearances must be considered minimum at any temperature.
B. Increased Clearances. Greater clearances than given in Table 1, Order 1232A, shall be provided where required by 1, 2, and 3 below. Increases are cumulative where more than one applies.

Exception: Increased clearances are not required for trolley contact conductors, for guys, or for cable supported by messenger.

1. Span Longer Than Specified in Order 1232A. In applying the following rules the “point of crossing” in the case of roads, streets, alleys and driveways is considered to be the edge of the traveled way farthest from the nearer support of the crossing span. In the case of a railroad crossing, it is the track rail which is farthest from the nearer support of the crossing span. In other situations it is the location under the conductors of any topographical feature which is the determinant of the clearance.

(a) Where Point of Crossing Occurs at Point of Maximum Total Sag of the Conductor.

(1) General. For spans exceeding the limits specified in Order 1232A, the clearance specified in Table 1 shall be increased by 0.1 foot for each 10 feet of the excess span length over such limits. (See (3) below)

(2) Railroad Crossings. For spans exceeding the limits specified in Order 1232A, the clearance specified in Table 1 shall be increased by the following amounts for each 10 feet by which the crossing span lengths exceed such limits. (See (3) below)

Amount of Increase per 10 Feet
For conductors equal to or smaller than the following:....0.30 foot Solid copper 0.125 inches in diameter Stranded copper 0.150 inches in diameter Other than all copper (solid) 0.345 inches in diameter Other than all copper (stranded) 0.375 inches in diameter
For conductors larger than the above:.................0.15 foot

(3) Limits. The maximum additional clearance need not exceed 75 percent of the “maximum sag increase” for the conductor concerned. The “maximum sag increase” is the arithmetic difference between final unloaded sag at 60°F, no wind, and the maximum total sag under the entire conductor loading of Order 1251, or under 120°F, no wind, whichever sag is the greater, computed for the span length for which such difference is greatest.

(b) Where Point of Crossing Is Not at Point of Maximum Total Sag of the Conductor. Under these conditions the required clearance may be obtained by multiplying the clearance determined by Orders 1232A and 1232B1(a) by the following factors, but in no case shall the clearance be less than required by Table 1.

<table>
<thead>
<tr>
<th>Distance from Nearest Support of Crossing Span to Point of Crossing in Percentage of Crossing Span Length</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.85</td>
</tr>
<tr>
<td>10</td>
<td>0.80</td>
</tr>
<tr>
<td>15</td>
<td>0.75</td>
</tr>
<tr>
<td>20</td>
<td>0.70</td>
</tr>
<tr>
<td>25</td>
<td>0.65</td>
</tr>
<tr>
<td>30</td>
<td>0.60</td>
</tr>
<tr>
<td>35</td>
<td>0.55</td>
</tr>
<tr>
<td>40 to 50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Interpolate for intermediate values.

2. Voltages Exceeding 150,000 Volts. For these voltages the clearances given in Table 1, Order 1232A, shall be increased at the rate of 0.5 inch for each 1,000 volts of the excess.

3. Conductors Supported by Suspension-type Insulators at Crossings Over Track Rails. The clearances shall be increased by such an amount that the values specified in Table 1, Order 1232A, will be maintained in case of a broken conductor in either adjoining span if the conductor is supported as follows:

(a) At one support by suspension-type insulators in a suspended position, and at the other support by insulators which are not free to swing (including semistrain-type insulators).

(b) At one support by strain insulators, and at the other support by semistrain-type insulators.

4. Methods of Avoiding this Increase of Clearance. Any of the following construction methods will avoid the necessity for the increase in clearance required by Order 1232B3.

(a) Suspension-type insulators in a suspended position at both supports.

(b) Semistrain-type insulators at both supports.

(c) Arrangement of insulators so that they are restrained from displacement toward the crossing.

C. Supply Pole Wiring at Underground Risers. Unguarded supply wires connecting to underground systems shall not be run open closer to the ground than is indicated in Table 2.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Clearance Above Ground for Open Unguarded Supply Wiring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>Feet</td>
</tr>
<tr>
<td>0 to 150 Volts</td>
<td>12</td>
</tr>
<tr>
<td>150 to 300 Volts</td>
<td>12</td>
</tr>
<tr>
<td>300 to 750 Volts</td>
<td>12</td>
</tr>
<tr>
<td>750 to 15,000 Volts</td>
<td>12</td>
</tr>
<tr>
<td>More Than 15,000 Volts</td>
<td>12</td>
</tr>
</tbody>
</table>

Order 1233. Wire Crossing Clearances.

The clearance between any two wires crossing each other and carried on different supports shall be not less than the following:

A. Basic Clearances. The clearances given in Table 3 below apply under the following conditions:

1. Temperature of 60°F, no wind, with the upper conductor or at its final unloaded sag and the lower conductor or wire at its initial unloaded sag.

2. Span lengths not greater than the following for the upper conductor or wire:

(a) 0-75 feet for all conductors, each wire of which is 0.09 inch or less in diameter.

(b) 0-175 feet for all conductors, each wire of which is 0.09 inch or less in diameter.

3. Voltages 0 to 150,000 Volts.

4. Fixed supports for the upper conductor or wire.
### Table 3

Wire Crossing Clearances

(The insertion of a given clearance in parentheses indicates that in general the lines operating at the voltage named above this clearance should not cross over the lines at the voltage to the left of the clearance in parentheses)

<table>
<thead>
<tr>
<th>Nature of Wires Crossed Over</th>
<th>Communication Wires Including Cables &amp; Messengers</th>
<th>Open Supply Wires and Service Drops (a)</th>
<th>Guys, Span Wires, Lightning Protection Wires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication, including cables and messengers</td>
<td>Feet</td>
<td>Feet</td>
<td>Feet</td>
</tr>
<tr>
<td>Supply cables, all voltages, having effectively grounded continuous metal sheaths or messengers, messengers associated with such cables</td>
<td>(b)2</td>
<td>(c)1/4</td>
<td>(1)2</td>
</tr>
<tr>
<td>Open supply wires</td>
<td>0 to 750 volts</td>
<td>(4)</td>
<td>2</td>
</tr>
<tr>
<td>750 to 8,700 volts</td>
<td>(4)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8,700 volts to 50,000 volts</td>
<td>(4)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>50,000 to 75,000 volts</td>
<td>(4)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>75,000 to 100,000 volts</td>
<td>(4)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>100,000 to 250,000 volts</td>
<td>(4)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Trolley contact conductors</td>
<td>(d)4</td>
<td>(d)1/4</td>
<td>(g)4</td>
</tr>
<tr>
<td>Guys, span wires, lightning protection wires, service drops</td>
<td>0 to 750 volts</td>
<td>(b)(g)2</td>
<td>2</td>
</tr>
</tbody>
</table>

### Footnotes for Table 3

a. A conductor which is effectively grounded throughout its length in accordance with Order 1031(B)(4) and is associated with a circuit of 750 to 7,700 volts may have the clearances specified for open supply wires of 0 to 750 volts.

b. The clearance of communication conductors and their guy spans, and messenger wires from each other in locations where no other classes of conductors are involved may be reduced by mutual consent of the parties concerned, subject to the approval of the administrative authority, except for fire-alarm wires and wires used in the operation of railroads, or where one set of conductors is for public use and the other used in the operation of supply systems.

c. Except where neutral conductors of primary supply circuits are concerned, a clearance of 2 feet may be permitted where the supply conductor is above the communication conductor, provided the crossing is not within 6 feet of any pole concerned in the crossing and the voltage does not exceed 30 volts (see note 1).

d. Trolley-contact conductors of more than 750 volts should have at least 6 feet clearance. This clearance should also be provided over lower-voltage trolley-contact conductors unless the crossover conductors are beyond reach of a trolley pole leaving the trolley-contact conductor or are suitably protected against damage from trolley poles leaving the trolley-contact conductor.

e. Trolley feeders are exempt from this clearance requirement for trolley-contact conductors if they are of the same nominal voltage and of the same system.

f. If the final ungrounded sag at 60°F. will be lower than a straight line joining the points of support of the highest communication conductor, or the crossing is within 6 feet horizontally of a communication pole, the clearance shall be increased to 5 feet.

g. This clearance shall be increased to 4 feet where communication cables cross over open supply service wires.

h. Completely insulated sections of guys attached to supporting structures having no conductor of more than 7,700 volts may have less than this clearance from each other.

i. Where a 2-foot clearance is required at 60°F. and where conditions are such that the sag in the upper conductor would increase more than 1.5 feet at the crossing point under the applicable loading of Order 1251, the 2-foot clearance shall be increased by the amount of sag increase less 1.5 feet.
B. Increased Clearances. Greater clearances than given in Table 3, Order 1233A, shall be provided under the following conditions: The increases required in 1, 2, and 3 below are cumulative where more than one is applicable.

1. Crossing Spans Longer Than Specified in Order 1233A2. Under these conditions the clearances specified in table 3 shall be increased as follows:

   (a) Where the crossing occurs at the point of maximum total sag in the upper conductor, the clearances of table 3 shall be increased by the following amounts for each 10 feet by which the crossing span length exceeds the limits specified in rule 1233A2.

   

   \[
   \text{Amount of Increase per 10 Feet} \\
   \text{For conductors equal to or smaller than the following...} 0.36 \text{ foot} \\
   \text{Solid copper 0.160 inches in diameter} \\
   \text{Stranded copper 0.360 inches in diameter} \\
   \text{Other than all copper (solid) 0.200 inches in diameter} \\
   \text{Other than all copper (stranded) 0.275 inches in diameter} \\
   \text{For conductors larger than the above...} 0.15 \text{ foot}
   \]

   The maximum additional clearance need not exceed 75 percent of the "maximum sag increase" for the conductor concerned. The "maximum sag increase" is the arithmetic difference between final unloaded sag at 60°F, no wind, and the maximum total sag under the entire conductor loading of Order 1251, or under 120°F, no wind, whichever sag is the greater, computed for the span length for which such difference is greatest.

   (b) If the crossing point is located elsewhere than at the point of maximum total sag in the upper span, the required clearance may be obtained by multiplying the clearance determined in Order 1228 A and B, 1 (a), by the following factors, but in no case shall the clearance be less than required by Table 3.


| Distance from Nearest Support of Crossing Span to Point of Crossing, in Percentage of Crossing Span Length | Factors for Basic Clearance of
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Foot</td>
<td>6 Foot</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.35</td>
<td>0.47</td>
</tr>
<tr>
<td>10</td>
<td>0.47</td>
<td>0.58</td>
</tr>
<tr>
<td>15</td>
<td>0.60</td>
<td>0.71</td>
</tr>
<tr>
<td>20</td>
<td>0.71</td>
<td>0.83</td>
</tr>
<tr>
<td>25</td>
<td>0.82</td>
<td>0.94</td>
</tr>
<tr>
<td>30</td>
<td>0.94</td>
<td>1.06</td>
</tr>
<tr>
<td>35</td>
<td>1.06</td>
<td>1.06</td>
</tr>
<tr>
<td>40 to 50</td>
<td>1.06</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Interpolate for intermediate values.

2. Voltages Exceeding 150,000 Volts. For these voltages the clearances given in Table 3 (Order 1233A) shall be increased at the rate of 0.5 inch for each 1,000 volts in excess.

3. Conductors Supported by Suspension-type Insulators at Crossings Over Communication Wires. For such conductors the clearance shall be increased by such an amount that the values specified in

Table 3 (Order 1233A) will be maintained in case of a broken conductor in either adjacent span, provided such conductor is supported as follows:

   (a) At one support by suspension-type insulators in a suspended position, and at the other support by insulators not free to swing (including semistrain-type insulators).

   (b) At one support by a strain insulator, and at the other support by a semistrain-type insulator.

4. Methods of Avoiding this Increase of Clearance. Any of the following construction methods will avoid the necessity for the increase in clearance required by Order 1233, B, 3:

   (a) Suspension-type insulators in a suspended position at both supports.

   (b) Suspension-type insulators at both supports.

   (c) Arrangement of insulators so that they are restrained from displacement toward the crossing.

Order 1234. Clearances of Conductors of One Line From Other Conductors and Structures.

A. Clearances from Conductors of Another Line. The clearance in any direction between any conductor of one line and any conductor of a second and conflicting line shall be not less than the largest value required by 1, 2, or 3 below at 60°F and no wind.

1. Four feet.

2. The values required by Order 1235, A, 2, (a) (1) or (2) for separation between conductors on the same support.

3. The apparent sag of the conductor having the greater sag, plus 0.2 inch per kilovolt of the highest voltage concerned.

Exception: In situations where supply-line conductors only are involved, the clearance required by 3 above need not be greater than the value required by Order 1231, A and B, for a center-span crossing, assuming the conductor having the larger sag swinging through an arc of 45° from the vertical.

B. Clearances from Supporting Structures of Another Line. Conductors of any line passing near a pole or similar supporting structure of a second line without being attached thereto, shall have clearances from any part of such structure not less than the larger value required by either 1 or 2 below at 60°F and no wind.

1. Three feet if practicable.

2. The values required by Order 1235, A, 2, (a) (1) and (2) for separation between similar conductors on the same support, increased by 1 inch for each 2 feet of the distance from the supporting structure of the second line to the nearest supporting structure of the first line.

The climbing space on the structure of the second line shall in no case be reduced by a conductor of the first line.

C. Clearances from Buildings. 1. General. Conductors shall be arranged and maintained so as to hamper and endanger firemen as little as possible in the performance of their duties.
2. Ladder Space. Where buildings exceed three stories (or 50 feet) in height, overhead lines should be arranged where practicable so that a clear space or zone at least 6 feet wide will be left, either adjacent to the building or beginning not over 8 feet from the building to facilitate the raising of ladders where necessary for fire fighting.

Exception: This requirement does not apply where it is the unvarying rule of the local fire departments to exclude the use of ladders in alleys or other restricted places which are generally occupied by supply lines.

3. Open Supply Conductors Attached to Buildings. Where the permanent attachment of open supply conductors of any class to buildings is necessary for an entrance, such conductors shall meet the following requirements:

(a) Conductors of more than 300 volts shall not be carried along or near the surface of the building unless they are guarded or made inaccessible.

(b) Clearance of wires from building surface shall be not less than those required in Table 5, Order 1235 A, 3, (a) for clearance of conductors from pole surfaces.

4. Conductors Passing by or over Buildings. (a) Minimum Clearances. Unguarded or accessible supply conductors carrying voltages in excess of 300 volts shall not come closer to any building or its attachments (balconies, platforms, etc.) than listed below, except that this rule should not be interpreted as restricting the installation of a trolley contact conductor over the approximate center line of the track it serves.

(1) Spans 0 to 150 Feet. For spans 0 to 150 foot, the clearances shall be as given in Table 4.

---

### Table 4: Clearances of Supply Conductors from Buildings

<table>
<thead>
<tr>
<th>Voltage of Supply Conductors</th>
<th>Horizontal Clearance</th>
<th>Vertical Clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feet</td>
<td>Feet</td>
<td>Feet</td>
</tr>
<tr>
<td>0 to 300</td>
<td>3</td>
<td>(a)</td>
</tr>
<tr>
<td>300 to 8,790</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>8,790 to 15,000</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>15,000 to 20,000</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>20,000 to 30,000</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>30,000 to 50,000</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>50,000 to 80,000</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>80,000 to 100,000</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>100,000 to 150,000</td>
<td>13 plus 0.5&quot;/per KV</td>
<td>13 plus 0.5&quot;/per KV</td>
</tr>
<tr>
<td>Exceeding 150,000</td>
<td>in excess</td>
<td>in excess</td>
</tr>
</tbody>
</table>

(a) Service drops operating at less than 300 volts need not be more than 3 feet above building roofs which cannot readily be walked on.
(2) Spans Exceeding 150 Feet. Where span lengths exceed 150 feet, the clearance specified in Table 4 shall be increased by 0.1 foot for each 10 feet of the excess of span length over 150 feet.

Exception: These increased clearances are not required where the voltage of the supply conductors is from 290 to 4,700 volts.

(b) Guarding of Supply Conductors. Supply conductors of 300 volts or more shall be properly guarded by grounded conduit, barriers, or otherwise, under the following conditions:

(1) Where the clearances set forth in Table 4, Order 1234, C, 4, (a), (1), cannot be obtained.

(2) Where such supply conductors are placed near enough to windows, verandas, fire escapes, or other ordinarily accessible places, to be exposed to contact by persons.

Note: Supply conductors in grounded metal-sheathed cable are considered to be guarded within the meaning of this rule.

(c) Crossing Roofs. Supply conductors exceeding 8,700 volts should not be carried over buildings not concerned in the operation of the utility owning them, if this can be avoided.

When it is necessary to attach wires to the roofs of buildings, the supporting structure shall be of substantial construction. Wherever feasible, wires crossing over buildings shall be supported or structures which are independent of the buildings crossed over.

D. Clearances from Bridges. 1. Clearances of Conductors from Bridges. Supply conductors, not installed in grounded conduit or metal-sheathed cable, which pass under, over, or near a bridge shall have clearances therefrom not less than given in Table 5.

2. Guarding Trolley Contact Conductors Located Under Bridges

(a) Where Guarding is Required. Guarding is required where the trolley contact conductor is located so that a trolley pole leaving the conductor can make simultaneous contact between it and the bridge structure.

(b) Nature of Guarding. Guarding shall consist of a substantial inverted trough of non-conducting material located above the contact conductor, or of other suitable means of preventing contact between the trolley pole and the bridge structure.

Order 1235. Minimum Line-conductor Clearances and Separations at Supports.

A. Separation Between Conductors on Pole Lines. 1. Application of Rule. (a) Multiconductor Wires or Cables. Cables, and duplex triple or paired conductors supported on insulators or messengers, whether single or grouped, are for the purposes of this order considered single conductors even though they may contain individual conductors not of the same phase or polarity.

(b) Conductors Supported by Messengers or Span Wires. Clearances between individual wires or cables supported by the same messenger, or between any group and its supporting messenger, or between a trolley feeder, supply conductor, or communication conductor, and their respective supporting span wires, are not subject to the provisions of this rule.

(c) Measurement of Clearances. The clearances and separations stated may be measured from the center of the supporting insulator instead of from the conductor itself.

2. Horizontal Separations Between Line Conductors. (a) Fixed Supports. Line conductors attached to fixed supports shall have horizontal separations from each other not less than the larger value required by either (1) or (2) below for the situation concerned.

Exception 1: The pin spacing at buckstap construction may be reduced as specified in Order 1234, F, to provide climbing space.

Exception 2: The pin spacing at bridge fixtures may be reduced as specified in Order 1235, C.

Exception 3: Grades D and N need meet only the requirements of (1) below.

Exception 4: These clearances do not apply where conductors have insulating covering adequate for the voltage concerned.

(1) Minimum Horizontal Separation Between Line Conductors of the Same or Different Circuits. Separations shall be not less than given in Table 6.

Table 6

<table>
<thead>
<tr>
<th>Class of Circuit</th>
<th>Separation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication conductors</td>
<td>Inches</td>
<td>0</td>
</tr>
<tr>
<td>Railway feeders 0 to 750 volts, No. 4/0 or larger</td>
<td>3</td>
<td>Permitted where pin spacings less than 6 inches have been in regular use. Does not apply at conductor transposition points.</td>
</tr>
<tr>
<td>0 to 750 volts, smaller than No. 4/0</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>750 volts to 8,700 volts</td>
<td>12</td>
<td>Where 10 to 12 inch separation has already been established by practice, it may be continued, subject to the provisions of Order 1235 A 2 (a), (2), for conductors having apparent sags not over 2 feet and for voltages not exceeding 6,700.</td>
</tr>
<tr>
<td>Other supply conductors 0 to 4,700 volts</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>For all conductors of more than 8,700 volts add for each 1,000 volts in excess of 8,700 volts</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>
(2) Separations. According to SAG, the separation at the supports of conductors of the same or different circuits of grades B or C shall in no case be less than the values given by the following formulas, at 60°F, no wind. The requirements of Order 1235, A. 2. (a), 1, apply if they give a greater separation than this rule.

For line conductors smaller than No. 2 A.W.G.:
Separation = 0.3 inch per kilovolt + \(7 \sqrt{S/3} - 8\)

For line conductors of No. 2 A.W.G. or larger:
Separation = 0.3 inch per kilovolt + \(8 \sqrt{S/12}\)

S is the apparent sag in inches of the conductor having the greater sag, and the separation is in inches.

### Table 7
Separation in Inches Required for Line Conductors Smaller Than No. 2 A.W.G.

<table>
<thead>
<tr>
<th>Voltages between Conductors</th>
<th>36</th>
<th>48</th>
<th>72</th>
<th>96</th>
<th>120</th>
<th>180</th>
<th>240</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) Suspension Insulators Not Restricted from Movement. Where suspension insulators are used and are not restricted from movement, the conductor separation shall be increased so that one string of line insulators may swing transversely through an angle of 45° from a vertical position without reducing the values given in (a) above.

### Table 8
Separation in Inches Required for Line Conductors of Size No. 3 A.W.G. or Larger

<table>
<thead>
<tr>
<th>Voltages between Conductors</th>
<th>36</th>
<th>48</th>
<th>72</th>
<th>96</th>
<th>120</th>
<th>180</th>
<th>240</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Clearances. In Any Direction from Line Conductors to Supports, and to Vertical or Lateral Conductors, Span or Guy Wires, Attached to the Same Support.

(a) Fixed Supports. Clearances shall be not less than given in Table 8.

### ELECTRICAL CODE—ORDER 1235

#### Table 9
Minimum Clearance in Any Direction from Line Conductors to Supports, and to Vertical or Lateral Conductors, Span or Guy Wires, Attached to the Same Support.

<table>
<thead>
<tr>
<th>Clearance of Line Conductors From</th>
<th>Communication Lines</th>
<th>Supply Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In General</td>
<td>On Jointly Used Poles</td>
</tr>
<tr>
<td>Vertical and lateral conductors</td>
<td>Inches</td>
<td>Inches</td>
</tr>
<tr>
<td>Of same circuit</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Of other circuits</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>When parallel to line</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Lighting-protection wires parallel to line</td>
<td>(b)</td>
<td>(b)</td>
</tr>
<tr>
<td>Surfaces of crossarms</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Surfaces of poles</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

**FOOTNOTES TO TABLE 9**

a. For guy wires, if practicable. For clearances between span wires and communication conductors, see Order 1235E, 3.

b. Clearance shall not be less than the separation required by Table 6 or Order 1235, A. 2. (a) (2) between two line conductors of the voltage concerned.

c. Communication conductors may be attached to supports on the sides or bottoms of crossarms or surfaces of poles with less clearances, if at least 49 inches from any supply line conductor of less than 8,700 volts and at least 60 inches from any supply line conductor of more than 8,700 volts carried on the same pole.

d. This clearance applies only to supply conductors carried on crossarms below communication conductors on joint poles. Where supply conductors are above communication conductors the clearance shall be at least 3 inches.

e. For the purpose of applying the above table, the voltage of lightning protection wires shall be considered as being the voltage to ground of any associated supply conductors.

3. For supply circuits of 6 to 750 volts, this clearance may be reduced to 3 inches.

f. A neutral conductor which is effectively grounded throughout its length, and is associated with a circuit of 6 to 750 volts may be attached directly to the pole surface.

g. Guy and messenger wires may be attached to the same strain plates or to the same clamps.

(b) Suspension Insulators Not Restricted from Movement. Where suspension insulators are used and are not restricted from movement, the conductor clearances from surfaces of supports, from span or guy wires, or from vertical or lateral conductors shall be such that the values of clearances required by (a) above will be maintained with an insulator swing of 45° from the vertical position on steel or concrete supports, or 30° if on wood poles.

4. Conductor Separation—Vertical Racks. Conductors or cables may be carried on vertical racks or separate brackets other than wood placed vertically at one side of the pole and securedly attached thereto, if all the following conditions are met.

(a) The voltage shall be not more than 750 volts, except that cables having effectively grounded continuous metal sheath may carry any voltage.
(b) Conductors if of the same or different materials or construction, shall be such that required separations will be maintained.

(c) Vertical spacing between conductors shall be not less than the following:

<table>
<thead>
<tr>
<th>Span Length</th>
<th>Vertical Clearance Between Conductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feet</td>
<td>(Inches)</td>
</tr>
<tr>
<td>0-150</td>
<td>4</td>
</tr>
<tr>
<td>150-300</td>
<td>6</td>
</tr>
<tr>
<td>300-500</td>
<td>8</td>
</tr>
<tr>
<td>500-750</td>
<td>10</td>
</tr>
</tbody>
</table>

(See Table 9, Order 1235, A, 3, for necessary clearances from pole surfaces and Order 1236, G, 1, for method of providing climbing space)

5. Separation Between Supply Circuits of Different Voltage Classifications on the Same Crossarm. Supply circuits of any one voltage classification as given in Table 11, Order 1236, A, 1, may be maintained on the same crossarm with supply circuits of the next consecutive voltage classification only under the following conditions:

(a) If they occupy pin positions on opposite sides of the pole.

(b) If in bridge-arm or side-arm construction they are separated by a distance of not less than the climbing space required for the higher voltage concerned and provided for in Order 1236.

(c) If the higher-voltage conductors occupy the outer pin positions and the lower-voltage conductors the inner pin positions.

(d) If series lighting or similar circuits, are ordinarily dead during periods of work on or above the crossarm concerned.

(e) If the two lines concerned are communication lines used in the operation of supply lines, and supply lines of less than 8,700 volts, and are owned by the same utility, provided they are installed as in (a) or (b) above.

B. Separation Between Conductors Attached to Buildings. Separation of wires from each other shall be not less than those required in Table 5, Order 1235, A, 2, (a), (1), for separation of conductors from each other at supports.

Exception: Conductors or vertical racks or separate brackets other than wood placed vertically meeting the requirements of Order 1235, A, 4, may have the separations specified in that rule.

C. Separation Between Conductors Attached to Bridges. Supply conductors attached to bridges and supported at frequent intervals may have less separation at supports than required by Order 1235, A, 2, (a), (1), and (2). The separation shall not be less than the clearance between supply conductors and the surfaces of poles or crossarms required by Order 1235, A, 3, (a), or less than the following:

<table>
<thead>
<tr>
<th>Span Length</th>
<th>Separation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feet</td>
<td>Inches</td>
</tr>
<tr>
<td>0 to 20</td>
<td>6</td>
</tr>
<tr>
<td>20 to 60</td>
<td>9</td>
</tr>
</tbody>
</table>

Order 1236. Climbing Space.

A. Location and Dimensions. 1. A climbing space having the horizontal dimensions specified in Order 1236, E, shall be provided past any conductors, crossarms, or other parts.

2. The climbing space need be provided on one side or corner of the pole only.

3. The climbing space shall extend vertically past any conductor or other part between levels above and below the conductor as specified in Order 1236, E, F, G, and I, but may otherwise be shifted from any side or corner of the pole to any other side or corner.

B. Portions of Supporting Structures in Climbing Space. Portions of the pole or structure when included in one side or corner of the climbing space are not considered to obstruct the climbing space.

C. Crossarm Location Relative to Climbing Space.

Recommendation: Crossarms should be located on the same side of the pole.

Exception: This recommendation does not apply where double crossarms are used on any pole or where crossarms on any pole are not all parallel.

D. Location of Supply Apparatus Relative to Climbing Space. Transformers, regulators, lightning arresters, and switches when located below conductors or other attachments shall be mounted outside of the climbing space.

E. Climbing Space Through Conductors on Crossarms. 1. Conductors of Same Voltage Classification on Same Crossarm. Climbing space between conductors shall be of the horizontal dimensions specified in Table 10, (Order 1236, E, 3), and shall be provided both along and across the line, and shall be projected vertically not less than 40 inches above and 40 inches below the limiting conductors. Where communication conductors are above supply conductors of more than 8,700 volts between conductors, the climbing space shall be projected vertically at least 60 inches above the highest supply conductor.

Exception 1: This order does not apply if it is the unwavering practice of the employers concerned to prohibit employees from ascending beyond the conductors of the given line, unless the line is killed.

Exception 2: For supply conductors carried on a pole in a position below communication facilities in the manner permitted in Order 1236, B, 3, the climbing space need not extend more than 2 feet above such supply space.

2. Conductors of Different Voltage Classifications on the Same Crossarm. The climbing space shall be that required by Table 10, (Order 1236, E, 3) for the highest voltage of any conductor bounding the climbing space. The climbing space shall extend vertically to the limits specified in Order 1236, E, 1, and the exception thereon.

3. Horizontal Climbing Space Dimensions.
### Table 10

<table>
<thead>
<tr>
<th>Character of Conductor</th>
<th>Voltage of Conductors</th>
<th>Minimum Horizontal Dimensions of Climbing Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Conductors</td>
<td>To Ground</td>
<td>Between Conductor Lines</td>
</tr>
<tr>
<td></td>
<td>0 to 100</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>Above 100</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>30 to 500</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>150 to 1,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>500 to 1,500</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>1,500 to 5,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>5,000 to 15,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>15,000 to 50,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>50,000 to 150,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>150,000 to 500,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>500,000 to 1,500,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>1,500,000 to 5,000,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>5,000,000 to 15,000,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>15,000,000 to 50,000,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>50,000,000 to 150,000,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>150,000,000 to 500,000,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>500,000,000 to 1,500,000,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>1,500,000,000 to 5,000,000,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>5,000,000,000 to 15,000,000,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>15,000,000,000 to 50,000,000,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>50,000,000,000 to 150,000,000,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>150,000,000,000 to 500,000,000,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>500,000,000,000 to 1,500,000,000,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>1,500,000,000,000 to 5,000,000,000,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>5,000,000,000,000 to 15,000,000,000,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>15,000,000,000,000 to 50,000,000,000,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>50,000,000,000,000 to 150,000,000,000,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>150,000,000,000,000 to 500,000,000,000,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>500,000,000,000,000 to 1,500,000,000,000,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>1,500,000,000,000,000 to 5,000,000,000,000,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>5,000,000,000,000,000 to 15,000,000,000,000,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>15,000,000,000,000,000 to 50,000,000,000,000,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>50,000,000,000,000,000 to 150,000,000,000,000,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>150,000,000,000,000,000 to 500,000,000,000,000,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>500,000,000,000,000,000 to 1,500,000,000,000,000,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>1,500,000,000,000,000,000 to 5,000,000,000,000,000,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>5,000,000,000,000,000,000 to 15,000,000,000,000,000,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>15,000,000,000,000,000,000 to 50,000,000,000,000,000,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>50,000,000,000,000,000,000 to 150,000,000,000,000,000,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>150,000,000,000,000,000,000 to 500,000,000,000,000,000,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>500,000,000,000,000,000,000 to 1,500,000,000,000,000,000,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>1,500,000,000,000,000,000,000 to 5,000,000,000,000,000,000,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>5,000,000,000,000,000,000,000 to 15,000,000,000,000,000,000,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>15,000,000,000,000,000,000,000 to 50,000,000,000,000,000,000,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>50,000,000,000,000,000,000,000 to 150,000,000,000,000,000,000,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>150,000,000,000,000,000,000,000 to 500,000,000,000,000,000,000,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>500,000,000,000,000,000,000,000 to 1,500,000,000,000,000,000,000,000</td>
<td>Above 500</td>
</tr>
<tr>
<td></td>
<td>1,500,000,000,000,000,000,000,000 to 5,000,000,000,000,000,000,000,000</td>
<td>Below 100</td>
</tr>
<tr>
<td></td>
<td>5,000,000,000,000,000,000,000,000 to 15,000,000,000,000,000,000,000,000</td>
<td>Above 500</td>
</tr>
</tbody>
</table>

**F. Climbing Space on Buckarm Construction.** The full width of climbing space shall be maintained on buckarm construction and shall extend vertically in the same position at least 40 inches (or 60 inches where required by Order 1236, E, 1), above and below any limiting conductor.

Method of Providing Climbing Space on Buckarm Construction. With circuits of less than 8,700 volts and span lengths not exceeding 150 feet and sags not exceeding 16 inches for wires of No. 2 and larger sizes, or 30 inches for wires smaller than No. 2, a six-pin crossarm having pin spacing of 14½ inches may be used to provide a 30-inch climbing space on one corner of a junction pole by omitting the pole pins on all arms, and inserting pins midway between the remaining pins so as to give a spacing of 7⅛ inches, provided that each conductor on the end of every arm is tied to the same side of its insulator, and that the spacing on the next pole is not less than 14½ inches.

**G. Climbing Space for Longitudinal Runs.** The full width of climbing space shall be provided past longitudinal runs and shall extend vertically in the same position from 40 inches below the run to a point 40 inches above (or 60 inches where required by Order 1236, E, 1). The width of climbing space shall be measured from the longitudinal run concerned. Longitudinal runs on racks, or supply cables on messengers, are not considered as obstructing the climbing space if all wires are concerned are covered by rubber protective equipment or otherwise guarded as an unvarying practice before workmen climb past them. This does not apply where communication conductors are above the longitudinal runs concerned.

**H. Climbing Space Past Vertical Conductors.** Vertical runs incased in suitable conduit or other protective covering and securely attached to the surface of the pole or structure are not considered to obstruct the climbing space.
1. Climbing Space Near Ridge-pin Conductors. The climbing space specified in Order 1236, E, 3, shall be provided above the top crossarm and past the ridge-pin conductor.

Exception: Where a single crossarm carrying only two conductors is mounted so that the conductors are 5 feet below a single ridge-pin conductor, the climbing space specified in Order 1236, E, 3, shall be carried up to the ridge-pin conductor, but need not be carried past it.

Order 1237. Lateral Working Space.

A. Location of Working Spaces. Working spaces shall be provided on the climbing face of the pole at each side of the climbing space.

B. Dimensions of Working Spaces. 1. Along the Crossarm. The working space shall extend from the climbing space to the outermost pin position on the crossarm.

2. Perpendicular to the Crossarm. The working space shall have the same dimension as the climbing space (see Order 1236, E). This dimension shall be measured from the face of the crossarm.

3. Vertically. The working space shall have a height not less than that required by Order 1238 for the vertical separation of line conductors carried at different levels on the same support.

C. Location of Vertical and Lateral Conductors Relative to Working Spaces. The working spaces shall not be obstructed by vertical or lateral conductors. Such conductors shall be located on the opposite side of the pole from the climbing side or on the climbing side of the pole at a distance from the crossarms at least as great as the width of climbing space required for the highest-voltage conductors concerned. Vertical conductors enclosed in suitable conduit may be attached on the climbing side of the pole.

D. Location of Buckarms Relative to Working Spaces. Buckarms may be used under any of the following conditions, provided the climbing space is maintained. Climbing space may be obtained as in Order 1236, F.

1. Standard Height of Working Space. Lateral working space of height required by Table 11, (Order 1238, A, 1) may be provided between the buckarms and adjacent line arms to which conductors on the buckarms are not attached.

Method of meeting requirements. This may be accomplished by increasing the spacing between the line crossarm gains.

2. Reduced Height of Working Space. Where no circuits exceeding 8,700 volts between conductors are involved, and the clearances of Orders 1235, A, 2, (a), (1) and (2) are maintained, buckarms may be placed between line arms having normal spacing, even though such buckarms obstruct the normal working space; provided that a working space of not less than 18 inches in height is maintained either above or below each line arm and each buckarm.

Exception: The above working space may be reduced to 12 inches if both of the following conditions exist. Not more than two sets of line arms and buckarms are involved. Working conditions are rendered safe by providing rubber protective equipment or other suitable device to insulate and cover line conductors and equipment which are not being worked on.

Order 1238. Vertical Separation Between Line Conductors, Cables, and Equipment Located at Different Levels on the Same Pole or Structure.

All line conductors, cables, or equipment located at different levels on the same pole or structure shall have the vertical separations set forth below.

A. Vertical Separations Between Horizontal Crossarms. Crossarms supporting line conductors shall be spaced in accordance with Table 11. Vertical separations between crossarms shall be measured from center to center.

1. Basic Separations. The separations given in Table 11 are for crossarms carrying conductors of 0 to 150,000 volts attached to fixed supports.

2. Increased Separations for Voltages Exceeding 150,000. For voltages greater than 150,000, the clearances of Table 11 shall be increased at the rate of 0.4 inch per 1,000 volts of the excess.

B. Vertical Separation Between Line Conductors on Horizontal Crossarms. Where line conductors are supported on horizontal crossarms spaced as required in Order 1238, A the vertical separation between such conductors shall not be less than the following:

1. Where Conductors on the Crossarm Are of the Same Voltage Classification. Under these conditions, the vertical separation required by Table 11 may be reduced as follows:

<table>
<thead>
<tr>
<th>Where Crossarm Separation Required by Table 11 Is</th>
<th>Separation Between Conductors May Be Reduced to</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 feet</td>
<td>16 inches</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>45</td>
</tr>
</tbody>
</table>

2. Where Conductors of Different Voltage Classifications Are on Same Crossarm. Under these conditions, the vertical separation between conductors on adjacent crossarms shall be that required by Table 11 (Order 1238 A, 1) above for the highest voltage classification concerned.

3. Conductors of Different Sag’s on Same Support. (a) Variation in Clearance. Line conductors supported at different levels on the same structure and strung to different sag’s shall have vertical spacings at the supporting structures as adjusted that the minimum spacing at any point in the span, at 60°F. with no wind, shall not be reduced more than 25 percent from that required at the supports by Orders 1235, A, 2, (a), (1) and (2) and 12388.

(b) Readjustment of Sag’s. Sag’s should be readjusted when necessary to accomplish the foregoing, but not reduced sufficiently to conflict with the requirements of Order 1261, F, 4. In cases where conductors of different sags are strung to the same sag for the sake of appearance or to maintain unreduced clearance throughout storms, the chosen sag should be such as will keep the smallest conductor involved in compliance with the sag requirements of Order 1261, F, 4.
### TABLE 11

<table>
<thead>
<tr>
<th>Supply Voltage</th>
<th>Vertical Separation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>60,000 to 80,000 volts</td>
<td>7 feet</td>
<td>Table 11 applies.</td>
</tr>
<tr>
<td>80,000 to 100,000 volts</td>
<td>6 feet</td>
<td>Table 11 applies.</td>
</tr>
</tbody>
</table>

**Notes to Table 11:**
- The minimum separation distances in this table apply only to conductors carrying communication circuits. Conductors carrying electric power and communication circuits shall conform to the clearance requirements specified in Table 11 and 11A.
- When communication conductors are operated by different utilities, a minimum clearance of 3 feet shall be provided. If communication conductors are operated by the same utility, the minimum clearance shall be the product of the factors in the table.
- The minimum separation distances in this table apply only to conductors carrying communication circuits. Conductors carrying electric power and communication circuits shall conform to the clearance requirements specified in Table 11 and 11A.
- Communication conductors shall be supported by ungrounded poles and racks.
Order 1239. Clearances of Vertical and Lateral Conductors from Other Wires and Surfaces on the Same Support.

Vertical and lateral conductors shall have the clearances and separations required by this rule from other conductors, wires, or surfaces on the same support.

Exception 1: This order does not prohibit the placing of supply circuits of the same or next voltage classification in the same iron pipe, if each circuit or set of wires be enclosed in a metal sheath.

Exception 2: This order does not prohibit the placing of paired communication conductors in rings attached directly to the pole or to messenger.

Exception 3: This order does not prohibit placing grounding conductors, neutral conductors which are effectively grounded throughout their length, and associated with supply circuits of 5 to 15,000 volts, metal sheathed supply cables, or conductors enclosed in conduit, directly on the pole.

Exception 4: This order does not prohibit placing supply circuits of 550 volts or less and not exceeding 3,200 watts and properly insulated, in the same cable with control circuits with which they are associated.

A. Location of Vertical or Lateral Conductors Relative to Climbing Spaces, Working Spaces, and Pole Steps. Vertical or lateral conductors shall be located so that they do not obstruct climbing spaces, or lateral working spaces between line conductors at different levels or interfere with the safe use of existing pole steps.

Exception 1: This order does not apply to portions of the pole which workmen do not ascend while the conductors in question are alive.

Exception 2: This order does not apply to vertical runs enclosed in suitable conduit or other protective covering. (See Order 1236, H.)

B. Conductors not in Conduit. Conductors not incased in conduit shall have the same clearances from conduits as from other surfaces of structures.

C. Mechanical Protection Near Ground. Where within 8 feet from the ground, all vertical conductors, cables, and grounding wires shall be protected by a covering which gives suitable mechanical protection. For grounding wires from lightning arresters, the protective coverings specified above shall be of wood molding, or other insulating material giving equivalent protection.

Exception 1: This covering may be omitted for armored cables or cables installed in a grounded metal conduit.

Exception 2: This covering may be omitted for lead-sheathed cables in rural districts.

Exception 3: This covering may be omitted from vertical runs of communication cables or conductors.

Exception 4: This covering may be omitted for grounding wires having triple-braid weather-proof covering, in rural districts or where such grounding wire is one of a number of grounding wires used to provide multiple grounds.

Exception 5: This covering may be omitted from wires which are used solely to protect poles from lightning.

D. Requirements for Vertical and Lateral Supply Conductors on Supply Line Poles or Within Supply Space on Jointly Used Poles. 1. General Clearances. In general, clearances shall be not less than the values specified in Table 12.

Table 12

<table>
<thead>
<tr>
<th>Clearances (in Inches) for Highest Voltage Concerned in the Clearances</th>
<th>0 to 1,700 Volts</th>
<th>Exceeding 2,000 Volts (add the Following for Each 1,000 Volts in Excess)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From surfaces of supports</td>
<td>8</td>
<td>0.05</td>
</tr>
<tr>
<td>From spans, guy or messenger wires</td>
<td>8</td>
<td>0.5</td>
</tr>
<tr>
<td>From line conductors rigidly supported on fixed supports</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>From line conductors not rigidly supported on fixed supports</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>From line conductors rigidly supported on fixed supports</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>From line conductors not rigidly supported on fixed supports</td>
<td>(e)</td>
<td>(f)</td>
</tr>
</tbody>
</table>

*The clearances shall be increased beyond the values given above from line conductors on fixed supports. (See Order 1236, A, 2, (b), and 3, (b)).

2. Special Cases. The following apply only to portions of a pole which workmen ascend while the conductors in question are alive.

(a) Side-arm Construction. Vertical conductors in metal-sheathed cables and grounding wires may be run without insulating protection from supply line conductors on poles used only for supply lines and employing side-arm construction on the side of the pole opposite to the line conductors if climbing space is provided on the line conductor side of pole.

(b) On Insulators. Vertical and lateral conductors of less than 8,700 volts if on poles used only for supply lines may be run in multiple-conductor cables having suitable substantial insulating covering, if such cable is held taut on standard insulator supported on pins or brackets and is arranged so that the cable is held at a distance of approximately 6 inches from the surface of the pole, and from any pole step.

(c) Conductors to Street Lamps. On poles used only for supply lines, open wires may be run from the supply line arm directly to the head of a street lamp, provided the clearances of table 12 are obtained and the open wires are substantially supported at both ends.

(d) Conductors of Less Than 500 Volts. Vertical or lateral secondary supply conductors of not more than 300 volts may be run in multiple-conductor cable attached directly to the pole surface or to crossarms in such a manner as to avoid abrasion at the point of attachment. Each conductor of such cable which is not effectively grounded, or the entire cable assembly, shall have an insulating covering required for a conductor of at least 600 volts.

(e) Other Conditions. If open wire conductors are within 3 feet of the pole, vertical conductors where within a zone of 4 feet above and below such line conductors of not more than 8,700 volts or where within a zone 6 feet above and below such line conductors of more than 8,700 volts, shall be run in one of the following ways:

1. (a) To clear the pole center by not less than 15 inches if the vertical conductors are of 8,700 volts or less, or 20 inches if more than 8,700 volts;
(2) Enclosed in insulating conduit, or in metal conduit or cable protected by an insulating covering; (3) Conductors with triple-braid weatherproof or equivalent covering and covered by wood molding.

Methods (2) and (3) apply also to lateral runs and to grounding conductors, except that conductors for grounding lightning protection wires are not required to be covered within 6 feet above or below circuits of 15,000 volts or more.

E. Requirements for Vertical and Lateral Communication Conductors. Conductors in Communication Lines Poles or Within the Communication Space on Jointly Used Poles. 1. Clearances from Wires. The clearances and separations of vertical and lateral conductors from other conductors (except those in the same ring run) and from guy, span, or messenger wires shall be 3 inches.

2. Clearances from Pole and Crossarm Surfaces. Vertical and lateral insulated communication conductors may be attached directly to a pole or crossarm. They shall have a vertical clearance of at least 40 inches from any supply conductors (other than vertical runs or lamp leads) of 8,700 volts or less, or 60 inches if more than 8,700 volts between conductors.

Exception: These clearances do not apply where the supply circuits involved are those carried in the manner specified in Order 1230, B. 3.

F. Requirements for Vertical Supply Conductors Passing Through Communication Space on Jointly Used Poles. Vertical supply conductors, including grounding wires, which pass through communication line space on joint poles shall be installed as follows:

1. Metal-sheathed Supply Cables. Metal-sheathed supply cables shall be covered as follows:
   (a) Extent of Covering. Covering shall extend from the lowest points of such cables up to 40 inches above the highest communication conductors.
   (b) Nature of Covering. The covering shall consist of wood molding or other suitable insulating material at points higher than 8 feet above the ground.

Exception 1: Metal pipe may be used throughout, under the following conditions:

On poles where there are no trolley attachments and the metal pipe is effectively grounded, no insulating covering is required.

On poles where there are trolley attachments or where the metal pipe is not effectively grounded, the pipe shall be covered with wood molding or other suitable insulating material from a point six feet below the lowest communication wire or trolley attachment to a point 40 inches above the highest communication wire or trolley attachment.

Exception 2: No insulating covering is required over supply secondary multi-conductor cables attached directly to the pole surface in accordance with the requirements of Order 1234, F. 3, (c).

Exception 3: Where there are no trolley attachments on the pole, no insulating covering is required over supply cables having effectively grounded and sheath, or supply cables having effectively grounded metal sheath of other types where mutually agreed to by the parties concerned.

2. Supply Conductors. Supply conductors shall be installed in one of the following ways:

(a) In Conduit. Conductors of all voltages may be enclosed in the same way and to the same extent as required in 1 above for metal-sheathed cables.

(b) On Pins and Insulators. Vertical and lateral conductors of street-lighting circuits and service leads of less than 750 volts may be run in multiple-conductor cable having suitable substantial insulating covering if such cable is held taut on standard insulators supported on pins or brackets and arranged so that the cable shall be held at a distance of approximately 5 inches away from the surface of the pole or from any pole steps.

(c) Installed on the Pole Surface. Secondary supply conductors of not more than 300 volts may be run in multiple-conductor cables attached directly to the pole surface in such a manner as to avoid abrasion at the points of attachment. In the case of aerial services, the point where such cables leave the pole shall be at least 40 inches above the highest, or 40 inches below the lowest communication attachment. Each conductor of such cable which is not effectively grounded shall be insulated for a potential of at least 600 volts.

(d) Suspended from Supply Crossarm. Lamp leads of street-lighting circuits may be run from supply crossarms directly to a street lamp bracket or luminaire under the following conditions:

(1) The vertical run shall consist of paired wires or multiple-conductor cable securely attached at both ends to suitable brackets and insulators.

(2) The vertical run shall be held taut at least 40 inches from the surface of the pole (through the communication space), at least 12 inches beyond the end of any communication crossarm by which it passes, and at least 6 inches from communication drop wires.

(3) Insulators attached to lamp brackets for supporting the vertical run shall be capable of meeting, in the position in which they are installed, the same flashover requirements as the luminaire insulators.

(4) Each conductor of the vertical run shall be No. 10 A.W.G. or larger.

3. Supply Grounding Wires. Supply grounding wires shall be covered with wood molding or other suitable insulating covering to the extent required for metal-sheathed cables in 1 above.

Exception: If there are no trolley attachments on the pole, insulating covering is not required for a grounding conductor which is metallically connected to a conductor which forms part of an effective grounding system.

4. Separation From Through Bolts. Vertical runs of supply conductors shall be separated from the ends of through bolts associated with communication line equipment by one-eighth of the circumference of the pole where practicable, but in no case less than 2 inches.
G. Requirements for Vertical Communication Conductors Passing Through Supply Space on Jointly Used Poles. All vertical runs of communication conductors passing through supply space shall be installed as follows:

1. Metal-sheathed Communication Cables. Vertical runs of metal-sheathed communication cables shall be covered with wood molding, or other suitable insulating material, where they pass trolley feeders or other supply-line conductors. This insulating covering shall extend from a point 40 inches above the highest trolley feeders, or other supply conductors, to a point 6 feet below the lowest trolley feeders or other supply conductors, but need not extend below the top of any mechanical protection which may be provided near the ground.

Exception: Communication cables may be run vertically on the pole through space occupied by railroad signal supply circuits in the lower position, as permitted in Order 1229, B, 3, without insulating covering within the supply space.

2. Communication Conductors. Vertical runs of insulated communication conductors shall be covered with wood molding, or other suitable insulating material, to the extent required for metal-sheathed communication cables in 1 above, where such conductors pass trolley feeders or other supply conductors.

Exception: Communication conductors may be run vertically on the pole through space occupied by railroad signal supply circuits in the lower position, as permitted in Order 1229, B, 3, without insulating covering within the supply space.

3. Communication Grounding Conductors. Vertical communication grounding conductors shall be covered with wood molding or other insulating material between points at least 6 feet below and 40 inches above any trolley feeders or other supply line conductors by which they pass.

Exception: Communication grounding conductors may be run vertically on the pole through space occupied by railroad signal supply circuits in the lower position, as permitted in Order 1229, B, 3, without insulating covering within the supply space.

4. Separation from Through Bolts. Vertical runs of communication conductors shall be separated from the ends of through bolts associated with supply-line equipment by one-eighth of the circumference of the pole where practicable, but in no case less than 2 inches.

SECTION 124. GRADES OF CONSTRUCTION
Order 1240. General.

For the purposes of section 126, "Strength requirements," and section 127, "Line insulators," conductors and their supporting structures are classified under the grades specified in this section on the basis of the relative hazard existing.

Order 1241. Application of Grades of Construction to Different Situations.

A. Supply Cables. For the purpose of these rules supply cables are divided into two classes as follows:

1. Specially Installed Cables. In this class are included metal-sheathed supply cables installed in accordance with Order 1261, G, 1.

Note: Such cables are sometimes permitted to have a lower grade of construction than open-wire supply conductors of the same voltage.

2. Other Cables. In this class are included all other supply cables.

Note: Such cables are required to have the same grade of construction as open-wire supply conductors of the same voltage.

B. Two or More Conditions. In any case where two or more conditions affecting the grade of construction exist, the grade of construction used shall be the highest one required by any of the conditions.

C. Order of Grades. For supply and communication conductors and supporting structures, the relative order of grades is B, C, and N, grade B being the highest. Where grades D and N are specified for communication lines, grade D is the highest.

Note: Grade D cannot be directly compared with the series B and C, but Order 1241, D, 3, (c) provides for cases where these two conditions are present.

D. At Crossings. 1. Grade of Upper Line. Conductors and supporting structures of a line crossing over another line shall have the grade of construction specified in Orders 1241, D, 3; 1242, and 1243.

2. Grade of Lower Line. Conductors and supporting structures of a line crossing under another line need only have the grades of construction which would be required if the line at the higher level were not there.

3. Multiple Crossings. (a) Where a Line Crosses in One Span Over Two Other Lines. The grade of construction of the uppermost line shall be not less than the highest grade which would be required of either one of the lower lines if it crossed the other lower line.

Example: If a 3,000-volt line crosses in the same span over a communication line and a direct-current trolley contact conductor of more than 720 volts, the 3,000-volt line is required to comply with grade B construction at the crossing.

This is a double crossing and introduces a greater hazard than where the upper supply line crosses the communication line only.

(b) Where One Line Crosses over a Span in Another Line, Which Span is in Turn Involved in a Second Crossing. The grade of construction for the highest line shall be not less than that required for the next lower line.

Exception: This requirement does not apply when the two upper lines are of such nature and have such circuit protection that the danger of causing a break in the lower of these two lines by mechanical or electrical contact is eliminated.
(e) Where Communication Conductors Cross over Supply Conductors and Railroad Tracks in the Same Span. The grades of construction shall be in accordance with Table 13.

**TABLE 13**

Grades of Construction for Communication Conductors Crossing Over Railroad Tracks and Supply Lines

<table>
<thead>
<tr>
<th>When crossing over</th>
<th>Communication conductor grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad tracks and supply lines of 0 to 760 volts, or specially installed supply cables of all voltages</td>
<td>D</td>
</tr>
<tr>
<td>Railroad tracks and supply lines exceeding 760 volts</td>
<td>B</td>
</tr>
</tbody>
</table>

Recommendation: It is recommended that the placing of communication conductors above supply conductors at crossings, conflicts, or on jointly used poles be avoided unless the supply conductors are trolley contact conductors and their associated feeders.

E. Conflicts. 1. How Determined. Where two lines are adjacent (except at crossing spans) the distance between them and the relative heights above ground of poles and of conductors on each line determine whether conflict exists, and, if so, whether the conflict is a structure conflict (see Definition) or a conductor conflict (see Definition), or both.

2. Conductor Conflict. At conductor conflicts the grade of construction of the conflicting conductor shall be as required by Orders 1241, D, 3, and 1243.

3. Structure Conflict. At structure conflicts, the grade of construction of the conflicting structure shall be as required by Order 1248.

Order 1242. Grades of Construction for Conductors.

The grades of construction required for conductors of all classes in different situations are given in Tables 14 and 15. For the purpose of these tables certain classes of circuits are treated as follows:

A. Status of Constant-current Circuits. The grade of construction for a constant-current supply circuit involved with a communication circuit and not in specially installed cable shall be based on either its current rating or on the open-circuit voltage rating of the transform supplying such circuit, as set forth in Tables 14 and 15. In all other cases the grade of construction for a constant-current circuit shall be based on its nominal full-load voltage.

B. Status of Railway Feeders and Trolley Contact Conductors. In determining grades of construction where railway feeders and trolley contact conductors are involved they shall be considered as other supply conductors of the same voltage.

Exception: Direct-current trolley circuits exceeding 760 volts where crossing over, conflicting with, or on jointly used poles with and above communication circuits, shall have the grades of construction specified in Table 14 for direct-current railway feeders.
### Table 14

Grades of Construction for Supply Conductors When Alone, at Crossings, at conflicts, or on Same Pole with Other Conductors

<table>
<thead>
<tr>
<th>Supply Conductors at higher levels</th>
<th>Constant-potential supply conductors other than D.C. railway feeders</th>
<th>Constant-current supply conductors</th>
<th>Direct-current railway feeders</th>
<th>Communication conductors used exclusively in the operation of and run as supply lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lines on fenced rights-of-way</td>
<td>Rural</td>
<td>Rural</td>
<td>B</td>
<td>See Order 1424, A.</td>
</tr>
<tr>
<td>Elsewhere than on fenced rights-of-way</td>
<td>Rural</td>
<td>Rural</td>
<td>N</td>
<td>See Order 1424, B.</td>
</tr>
<tr>
<td>Railroad tracks</td>
<td>Rural</td>
<td>Rural</td>
<td>N</td>
<td>See Order 1424, C.</td>
</tr>
<tr>
<td>Street-railway tracks having no overhead conductors</td>
<td>Rural</td>
<td>Rural</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Constant potential</td>
<td>Urban</td>
<td>Urban</td>
<td>(b) B</td>
<td></td>
</tr>
<tr>
<td>Supply conductors</td>
<td>Rural</td>
<td>Rural</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>0 to 750 volts</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>750 to 2,500 volts</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Constant current supply conductors open or cable</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Direct-current railway feeders open or cable</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Trolley contact conductors A, C, or D C</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Communication conductors open or cable</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Communication conductors open or cable</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Communication conductors</td>
<td>N</td>
<td>N</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Urban or rural</td>
<td>N</td>
<td>N</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Open or cable</td>
<td>N</td>
<td>N</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

**FOOTNOTES FOR TABLE 14**

(a) Grade N construction may be used for railway feeders not exceeding 750 volts.
(b) Where open wire lines are located so that they can fall outside the fenced right-of-way into urban districts, the construction shall comply with the grades specified for lines not on fenced right-of-way for corresponding voltage.
(c) If circumstances within a given area warrant it, supply conductors need only meet the requirements of Grade C construction if the higher level conductors are in cable including subsequent breaker operations, in the event of a contact with lower supply conductors or other grounded objects.
(d) Supply conductors are involved and those consist of service drops not grouped together in a single run.
(e) If the wires are service drops they may have grade N sizes and age as set forth in Tables 28 and 29. (Order 1241, B.)
(f) Grade C construction may be used where the communication conductors consist only of not more than one twisted pair or parallel conductor, or where 2 or more such insulated conductors are involved and those consist of service drops not grouped together in a single run.
(g) Supply conductors need only meet the requirements of Grade C construction if both the following conditions are satisfied: (1) The supply and communication circuits must use separate service drops, and (2) Both are installed in the same cable, and (3) The voltage and current impressed on the communication plant in the event of a contact with supply conductors are not in excess of the grounded messenger. (Order 1424, A, C.)
(h) Grade C construction may be used for supply cables installed as described in Order 1424, A, B, or for any supply cable on joints, used solely for communication purposes, as described in Order 1241, A, 1, or any supply cable on joint, used solely for communication purposes, as described in Order 1241, A, 1, or any supply cable on joint, used solely for communication purposes, as described in Order 1241, A, 1.
(i) Grade C construction may be used for open wire supply conductors where the current does not exceed 7.5 amperes or where the open wire circuit voltage is less than 750 volts.
(j) Grade N construction may be used if the lower level conductors are in cable, installed as described in Order 1241, A, 1.
(k) Grade N construction may be used if the upper level conductors are in cable, installed as described in Order 1241, A, 1.
(l) The supply conductors are in cable installed as described in Order 1241, A, 1, grade C, N, as outlined in Order 1241, A.
(m) Grade N construction may be used if the upper level conductors are in cable, installed as described in Order 1241, A, 1.
### Table 15

<table>
<thead>
<tr>
<th>Conductors, tracks and rights of way at higher levels</th>
<th>Communication conductors at higher levels</th>
<th>Communication conductors, rural or urban, open or cable, including communication conductors in such a manner as to be used exclusively in the operation of supply lines.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lines on fenced rights of way ........................................</td>
<td>Major</td>
<td>Minor</td>
</tr>
<tr>
<td>Elsewhere than on fenced rights of way ..................</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Railroad tracks ..................................................</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Street-railway tracks having no overhead contact wire</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Constant-potential supply conductors (b) ...............</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>750 to 5000 volts Open or cable ..........................</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>5000 to 25000 volts Open or cable .........................</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>6000 to 25000 volts Cable ......................................</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Exceeding 25000 volts Cable ..................................</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Constant current supply conductors (b) ....................</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>0 to 7.5 amp. Open (c) ...........................................</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Exceeding 7.5 amp. Open (c) ..................................</td>
<td>(d)</td>
<td>B</td>
</tr>
<tr>
<td>Direct-current railway feeders (b) ........................</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>0 to 750 volts Open or cable ..................................</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Exceeding 750 volts Open or cable .........................</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Trolley Contact Conductors (b) ...............................</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>0 to 750 volts A, C, or D.C. .................................</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Exceeding 750 volts A, C ......................................</td>
<td>(e)</td>
<td>B, or C</td>
</tr>
<tr>
<td>Communication conductors, open or cable, used exclusively in the operation of supply lines. (f)</td>
<td>B, C, or N</td>
<td></td>
</tr>
<tr>
<td>Communication conductors, open or cable, urban or rural, major or minor.</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

### Footnotes to Table 15

(a) It is recommended that the placing of communication conductors above supply conductors at crossings, conflicts, or jointly used poles be avoided if practicable, unless the supply conductors are trolley contact conductors and their associated feeders.

(b) The words "open" and "cable" appearing in the headings have the following meaning as applied to supply conductors: "Cable" means the specially installed cables described in Order 1241, A, 1. "Open" means open wire and also supply cables not "specially installed".

(c) Where constant-current circuits are in specially installed cable, they are considered on the basis of the nominal full-load voltage.

(d) Grade C construction may be used if the open-circuit voltage of the transformer supplying the circuit does not exceed 2,000 volts.

(e) See Order 1242, B.

(f) See Order 1242, C.
C. Status of Communication Circuits Used Exclusively in the Operation of Supply Lines. In determining grades of construction where communication circuits used exclusively in the operation of supply lines are concerned, they shall be considered as ordinary communication circuits when run as such (see Order 1288, A, 3) and as supply circuits when run as such. (See Order 1288, A, 4.)

Exception: Communication circuits located below supply circuits with which they are used shall not require such supply circuits to meet any rules for grade of construction other than that the sizes of such supply conductors shall not be less than required for grade C (see Order 1261, F, 2).

D. Status of Fire-alarm Conductors. In determining grades of construction where fire-alarm conductors are concerned, they shall be considered as other communication circuits.

Exception: Fire-alarm conductors shall always meet grade D where the span length is from 0 to 150 feet, and grade C where the span length exceeds 156 feet.

E. Status of Neutral Conductors of Supply Circuits. Supply-circuit neutral conductors, which are effectively grounded throughout their length in accordance with Order 1081, B, 5, (b) and are not located above supply conductors of more than 750 volts, shall have the same grade of construction as supply conductors of not more than 750 volts, except that they need not meet any insulation requirements. Other neutral conductors shall have the same grade of construction as the phase conductors of the supply circuits with which they are associated.

Order 1243. Grades of Supporting Structures.

A. Poles or Towers. The grade of construction shall be that required for the highest grade of conductors supported.

Note: See 180.18 of 1943 statutes for additional R. R. crossing requirements.

Exception 1: The grade of construction of jointly used poles, or poles used only by communication lines, need not be increased merely because of the fact that communication wires carried on such poles cross over trolley contact conductors of 0 to 750 volts.

Exception 2: Poles carrying grade C or D fire-alarm conductors, where alone, or where concerned only with other communication conductors, need not meet the requirements of grade N.

Exception 3: Poles carrying supply service loops of 0 to 750 volts shall have at least the grade of construction required for supply line conductors of the same voltage.

Exception 4: Where communication lines cross over supply conductors and a railroad in the same span and grade B is required by Order 1241, D, 3, (c) for the communication conductors, due to the presence of railroad tracks, the grade of the poles or towers shall be D.

C. Pins, Insulators, and Conductor Fastenings. The grade of construction shall be that required for the conductor concerned.

Exception 1: The grade of construction of pins, insulators, and conductor fastenings carrying only communication conductors need not be increased merely because of the fact that such conductors cross over trolley contact conductors of 0 to 750 volts.

Exception 2: In cases of grade C or D fire-alarm conductors where alone or where concerned only with other communication conductors, pins, insulators, and conductor fastenings need meet only the requirements for grade N.

Exception 3: In the case of supply service loops of 0 to 750 volts, pins, insulators, and conductor fastenings shall have at least the same grade of construction as required for supply line conductors of the same voltage.

Exception 4: Where communication lines cross over supply conductors and a railroad in the same span, and grade B is required by Order 1241, D, 3, (c) for the communication conductors, due to the presence of railroad tracks, the grade of the poles, insulators, and conductor fastenings shall be D.

Exception 5: In cases communication conductors are required to meet grade D or C, the insulators need meet only the requirements for mechanical strength for these grades.
SECTION 125. LOADING FOR GRADES B, C, AND D

Order 1250. Loading General.

Three degrees of severity are recognized in the U. S. for the loading, due to weather conditions, and are designated, respectively as heavy, medium, and light loading. The districts in which these loadings apply are determined by weather reports as to wind and ice and by local experience of utilities using overhead lines. The state of Wisconsin is considered as being in the heavy loading district. No data will therefore be given on light and medium loading. (See Order 1251.)

Order 1251. Conductor Loading.

The loading on conductors shall be assumed to be the resultant loading per foot equivalent to the vertical load per foot of the conductor, combined with the transverse loading per foot due to a transverse, horizontal wind pressure upon the projected area of the conductor to which equivalent resultant shall be added a constant.

In the tabulation below are the values for ice, wind, temperature, and constants which shall be used to determine the conductor loading,

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radial thickness of ice (inches)</td>
<td>0.50</td>
</tr>
<tr>
<td>Horizontal wind pressure (PSF)</td>
<td>4</td>
</tr>
<tr>
<td>Temperature (°F)</td>
<td>0</td>
</tr>
<tr>
<td>Constant to be added to the resultant (PSF)</td>
<td>0.29</td>
</tr>
<tr>
<td>For bare conductors of copper, steel, copper-alloy, copper-covered steel, and combinations thereof</td>
<td>0.31</td>
</tr>
<tr>
<td>For bare conductors of aluminum (with or without steel reinforcement)</td>
<td>0.31</td>
</tr>
<tr>
<td>For fireproof and similar covered conductors (all materials)</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Note: Since heavy ice does not often form on conductors in a heavy wind the transverse loading assumed is deemed sufficient for the purpose, but is not sufficient to represent the vertical (or combined) load which is imposed on conductors by the heavy deposits of ice which frequently form in comparatively still air. In order to apply a total loading to conductors representing more nearly the conditions encountered in practice, constants have been added to the conductor loading which make no substantial change in the conductor loading specified in the fourth edition of this code.

Where cables are concerned, the specified loadings shall be applied to both cable and messenger.

In applying loadings to bare stranded conductors, the coating of ice shall be considered as a hollow cylinder touching the outer strands.

If anyone desires to obtain a description or detail of loading they should refer to "The National Electrical Safety Code" published by the Bureau of Standards.

Order 1252. Loads Upon Line Supports.

A. Assumed Vertical Loading. The vertical loads upon poles, towers, foundations, crossarms, pins, insulators, and conductor fastenings shall be their own weight plus the superimposed weight which they support, including all ice covered wires and cables, together with the effect of any difference in elevation of supports. The radial thickness of ice shall be computed only upon wires, cables, and messengers, and shall be taken as 0.50 inch of ice. Ice is assumed to weigh 75 pounds per cubic foot.

Note: The weight of ice upon supports is ignored for the sake of simplicity.

B. Assumed Transverse Loading. In computing the stresses in poles, towers, and side guys the loading shall be taken as follows:

1. Cylindrical Surfaces. A horizontal wind pressure, at right angles to the direction of the line, of 4 pounds per square foot upon the projected area of cylindrical surfaces of all supported conductors and messengers, when covered with a layer of ice 0.6 inch in radial thickness and on surfaces of the poles and towers without ice covering, shall be assumed. (See 3 and 4 following.)

For supporting structures carrying more than 10 wires, not including cables supported by messengers, where the pin spacing does not exceed 16 inches, the transverse load shall be calculated on two-thirds of the total number of such wires with a minimum of 10 wires.

2. Trolley Contact Conductors. When a trolley contact conductor is supported on a commonly used pole it shall be included in the computation of the transverse load on the structure.

3. Flat Surfaces. For flat surfaces the assumed unit wind pressure shall be increased by 60 percent. Where latticed structures are concerned the actual exposed area of one lateral face shall be increased by 50 percent to allow for the pressure on the opposite face; this total, however, need not exceed the pressure which would occur on a solid structure of the same outside dimensions. The results obtained by more exact calculations may be substituted for the values obtained by this simple rule.

4. At angles (Combined Longitudinal and Transverse Loading) where a change in direction of wires occurs, the loading upon the structure, including guys, shall be assumed to be a resultant load equal to the vector sum of the transverse wind load given in B-1 above and the resultant load imposed by the wires due to their change in direction. In obtaining these loadings, a wind direction shall be assumed which will give the maximum resultant load, proper reduction being made in loading to account for the reduced wind pressure on the wires resulting from the angularity of the wind to the wires.

C. Assumed Longitudinal Loading. 1. Change in Grade of Construction. The longitudinal loading upon supporting structures, including poles, towers, and guys at ends of sections required to be of grade B construction, when located in lines of lower than grade B construction, shall be taken as an unbalanced pull in the direction of the higher grade section equal to the pull of two-thirds of the conductors supported thereon which are smaller than No. 2 A.W.G., the
conductor loading to be that given in Order 1251, and such two-thirds of the conductors being selected so as to produce the maximum stress in the supports.

If the application of the above results in a fractional part of a conductor, the nearest whole number shall be used. In no case shall the assumed unbalanced pull on the supporting structure be less than the maximum loaded tension in any two of the conductors carried (including overhead ground wires), such two conductors being selected so as to produce the maximum stress in the supports.

2. Jointly Used Poles at Crossings over Railroads or Communication Lines. Where a joint line crosses over a railroad or a communication line and grade B is required for the crossing span, the tension in the communication conductors of the joint line may be considered as limited to one-half their breaking strength, provided they are smaller than No. 8 Str. W. G., if of steel, or No. 6 A. W. G., if of copper, regardless of how small the initial sag of the communication conductors at 60°F.

3. Dead Ends. The longitudinal loading upon supporting structures shall be taken as an unbalanced pull equal to the tensions of all conductors and messengers (including overhead ground wires) under the conditions of loading specified in Order 1251.

4. Communication Conductors on Unguyed Supports at Railroad Crossings. The longitudinal loading shall be assumed equal to an unbalanced pull in the direction of the crossing of all open-wire conductors supported, the pull of each conductor being taken as 50 percent of its ultimate strength.

D. Average Span Lengths. 1. General. The calculated transverse loads, upon poles, towers, and crossarms, except as provided in 2 below, shall be based upon the average span length of a section of line that is reasonably uniform as to height, number of wires, grade, and span length. In no case shall the average value taken be less than 75 percent or more than 125 percent of the actual average of the two spans adjacent to the structure concerned.

2. Crossings. In the case of crossings over railroads or communication lines (other than minor communication lines) the actual lengths of the two spans adjacent to the two structures concerned shall be used.

E. Simultaneous Application of Loads. 1. When calculating transverse strength, the assumed transverse and vertical loads shall be taken as acting simultaneously.

2. In calculating longitudinal strength, the assumed longitudinal loads shall be taken without consideration of the vertical or transverse loads.

SECTION 126. STRENGTH REQUIREMENTS

Order 1260. Preliminary Assumptions.

It is recognized that deformation, deflection, or displacement of parts of the structure will, in some cases, change the effects of the loads assumed. In the calculation of stresses, however, no allowance shall be made for such deformation, deflection, or displacement of supporting structures (including poles, towers, conductor fastenings, and suspension insulators) unless the methods used to evaluate them have been approved by the administrative authority.

Order 1261. Grades B and C Construction.

A. Poles and Towers. The strength requirements for poles and towers may be met by the structures alone or with the aid of guys or braces.

1. Average Strength of Three Poles. A pole (single-base structure) not individually meeting the transverse strength requirements will be permitted when reinforced by a stronger pole on each side, the average strength of the three poles meeting the transverse strength requirements, and the weak pole has not less than 75 percent of the required strength.

An extra pole inserted in a normal span for the purpose of supporting a service loop may be ignored, if desired, in the calculation of the strength of the line.

Exception: In the case of crossings over railroads or communication lines (other than minor communication lines), the actual strengths of the crossing poles shall be used.

2. Reinforced-concrete Poles. Reinforced-concrete poles shall be of such material and dimensions as to withstand for vertical and transverse strength, the loads assumed in Order 1252, A and B, and for longitudinal strength the loads in Order 1252, C without exceeding the following percentages of their ultimate strength at the ground line for unguyed poles, or at the point of guy attachment for guyed poles. (Where guys are used, see Order 1261, C).

<table>
<thead>
<tr>
<th>Percentages of Ultimate Strength for Different Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade B</td>
</tr>
<tr>
<td>For transverse strength (when installed)</td>
</tr>
<tr>
<td>For longitudinal strength (at all times)</td>
</tr>
<tr>
<td>In general</td>
</tr>
<tr>
<td>At dead-ends</td>
</tr>
</tbody>
</table>

3. Steel Supporting Structures. In the design of steel structures, the term "overload capacity factor" referred to in table 16 is to be interpreted in such a manner that the completed structure, if tested, shall support without permanent deflection the maximum loading to
which it will be subjected as specified in section 128, multiplied by the factors given in table 16. The absence of permanent set on the structure indicates that no part has been stressed beyond the yield point. Allowance should be made for bolt slip.

Steel supports, steel towers, and metal poles shall be designed and constructed so as to meet the following requirements:

(a) Vertical and Transverse Strength. The completed structure shall be so designed and of sufficient strength as to provide overload capacity factors specified in table 16 under the vertical and transverse loading specified in Order 1252, A and B.

(b) Longitudinal Strength. Grade B. The completed structure shall be so designed and of sufficient strength as to provide overload capacity factors specified in table 16 under the longitudinal loading specified in Order 1252, C.

Grade C. No longitudinal strength requirements except at dead-ends.

(c) Minimum Strength. Steel structures shall have strength sufficient to withstand, with an overload capacity factor of 1.1, a transverse load on the structures without conductors, equal to six times the specified wind pressure.

(d) Strength of Angles in a Line. At an angle in a line having supports of steel poles or towers, the strength of the support shall be sufficient to withstand a combination of the transverse and longitudinal loadings specified in Order 1252, B, 4. For Grade B the transverse load shall be multiplied by 1.64, and for Grade C by 2.00 before combining with the load arising from change in direction of conductors. The allowable overload capacity factor at dead-ends given in table 16 shall be provided for the total load thus computed.

### Table 16
Minimum Overload Capacity Factors of Completed Structures (Based on Yield Point of Steel)

<table>
<thead>
<tr>
<th>Overload Capacity Factors</th>
<th>Grade B</th>
<th>Grade C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Strength</td>
<td>1.27</td>
<td>1.10</td>
</tr>
<tr>
<td>Transverse strength</td>
<td>2.84</td>
<td>2.59</td>
</tr>
<tr>
<td>Longitudinal strength:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At Crossings</td>
<td>1.10</td>
<td>1.10</td>
</tr>
<tr>
<td>At dead-ends</td>
<td>1.00</td>
<td>1.10</td>
</tr>
</tbody>
</table>

(e) Thickness of Steel. The thickness of metal in members of steel poles or towers shall be not less than the following:

<table>
<thead>
<tr>
<th>Kind of Member</th>
<th>Thickness of Main Members and Legs</th>
<th>Thickness of Other Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galvanized:</td>
<td>1/4 Inches</td>
<td>1/4 Inches</td>
</tr>
<tr>
<td>For localities where experience has shown deterioration of galvanized material is rapid.</td>
<td>1/2 Inches</td>
<td>1/2 Inches</td>
</tr>
<tr>
<td>For other localities.</td>
<td>1/2 Inches</td>
<td>1/2 Inches</td>
</tr>
<tr>
<td>Painted.</td>
<td>1/4 Inches</td>
<td>1/4 Inches</td>
</tr>
</tbody>
</table>

(f) Unsupported Length of Compression Members. The ratio of L, the unsupported length of a compression member, to R, the least radius of gyration of the member, shall not exceed the following: (These figures do not apply to the complete structure.)

<table>
<thead>
<tr>
<th>Kind of Compression Member</th>
<th>L/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leg members.</td>
<td>160</td>
</tr>
<tr>
<td>Other members having figured strakes.</td>
<td>200</td>
</tr>
<tr>
<td>Secondary members without figured strakes.</td>
<td>250</td>
</tr>
</tbody>
</table>

(g) General Construction Features. Steel poles or towers, including parts of footings above ground, shall be constructed so that all parts are accessible for inspection, cleaning, and painting, and so that pockets are not formed in which water can collect.

Recommendation: Unless sample structures, or similar ones, have been tested to assure the compliance of structures in any line with these requirements, it is recommended that structures be designed to have a computed strength at least 30 percent greater than that required by these rules.

(h) Protective Covering or Treatment. All iron or steel poles, towers, or supporting structures shall be protected by galvanizing, painting, or other treatment which will effectively retard corrosion.

4. Wood Poles. Wood poles shall be of such material and dimensions as to meet the following requirements. Where guys are used, see Order 1251, C.

(a) Transverse Strength. Wood poles shall withstand the transverse and vertical loads assumed in Orders 1252, A and B without exceeding at the ground line for unguyed poles, or at the point of guy attachment for guyed poles, the appropriate allowable percentages of their ultimate stress given in Table 20.

(b) Longitudinal and Dead-end Strength. The longitudinal and dead-end strength of wood poles shall be such that they will with-
stand the appropriate longitudinal loading specified in Order 1263, C, without exceeding, at the ground line for unguayed poles or at the point of guy attachment for guyed poles, the following percentages of the applicable ultimate fiber stress given in Table 19.

| Percentages of Ultimate Fiber Stress for Wood Poles |
|----------------|----------------|
| Grade B         | Grade C        |
| Longitudinal:   |                |
| When installed  | 0.75           | No requirement  |
| At replacement  | 0.10           | No requirement  |
| Dead Ribs       |                |
| When installed  | 0.03           | 0.35           |
| At replacement  | 0.75           | 1.00           |

Note: (a) Where supply lines alone are involved and built for a fixed period of temporary service not exceeding 5 years, the prescribed percentage of fiber stress at installation may be increased, provided the percentage of ultimate fiber stress required at replacement is not exceeded during the life of the line.

Exception 1: At a Grade B crossing, in a straight section of line, wood poles of approximately round cross-section, complying with the transverse strength requirements of Order 1261, A, 4, (a), without the use of transverse guys, shall be considered as having the required longitudinal strength. This exception does not modify the requirements of this rule for dead-ends.

Exception 2: At a Grade B crossing of a supply line over a communication line, where there is an angle in the supply line, wood poles of approximately round cross-section shall be considered as having the required longitudinal strength if all of the following conditions obtain:

1. The pole is on the angle pole in the plane of the resultant of the conductor tensions on both sides of the pole; the tension in this pole does not exceed 50 percent of its ultimate strength under the loading of Order 1258, B, 4.

2. The pole is on the angle pole in the plane of the resultant of the conductor tensions on both sides of the pole; the tension in this pole does not exceed 50 percent of its ultimate strength under the loading of Order 1258, B, 4.

3. The pole is on the angle pole in the plane of the resultant of the conductor tensions on both sides of the pole; the tension in this pole does not exceed 50 percent of its ultimate strength under the loading of Order 1258, B, 4.

4. The pole is on the angle pole in the plane of the resultant of the conductor tensions on both sides of the pole; the tension in this pole does not exceed 50 percent of its ultimate strength under the loading of Order 1258, B, 4.

(c) Ultimate Fiber Stress. Different kinds of wood poles are considered as having the ultimate fiber stresses given in Table 19.

<table>
<thead>
<tr>
<th>Ultimate Fiber Stress of Wood Poles</th>
<th>Ultimate Fiber Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kind of Wood</td>
<td>Lb./Sq. In.</td>
</tr>
<tr>
<td>Crooked southern pine</td>
<td>7.400</td>
</tr>
<tr>
<td>Douglas fir</td>
<td>7.400</td>
</tr>
<tr>
<td>Lodgepole pine</td>
<td>6.500</td>
</tr>
<tr>
<td>Cherry</td>
<td>6.000</td>
</tr>
<tr>
<td>Western red cedar</td>
<td>5.000</td>
</tr>
<tr>
<td>Cypress</td>
<td>5.000</td>
</tr>
<tr>
<td>Northern white cedar</td>
<td>3.000</td>
</tr>
<tr>
<td>Redwood</td>
<td>3.000</td>
</tr>
</tbody>
</table>

When values for ultimate stresses of cypress and redwood have been approved as standard by the American Standards Association, such values shall be used in place of those given above.

(d) Allowable Percentages of Ultimate Stress. The allowable percentages of ultimate stress of treated and untreated poles to withstand vertical and transverse loads are given in Table 20, except as modified in the following paragraph.

At crossings where Grade B construction is required, if the supply line is not maintained throughout (or between and including the nearest guyed points on each side of the crossing) so that the pole will not be stressed at any time in excess of 50 percent of their ultimate stress under the transverse loading assumed in Order 1252, B, the crossing poles, if guyed, shall be of such strength that they will withstand the transverse loading assumptions of Order 1259, B, 1 without exceeding 16 percent of their ultimate stress at installation or 25 percent at replacement. If the crossing poles are side guyed, such guys shall meet the requirements of Order 1261, C, 5.

<table>
<thead>
<tr>
<th>TABLE 20 Allowable Percentages of Ultimate Stress for Treated or Untreated Wood Poles Under Vertical and Transverse Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade B</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>At crossings</td>
</tr>
<tr>
<td>Elsewhere</td>
</tr>
</tbody>
</table>

(e) Freedom from Defects. Wood poles shall be of suitable and selected timber free from observable defects that would decrease their strength or durability.

(f) Minimum Pole Sizes. Wood poles shall have a nominal top circumference of not less than 15 inches.

(g) Spliced and Stub-reinforced Poles. Spliced poles shall not be used at crossings, conflicts, or joint-use sections requiring Grades B or C construction.

The use of stub reinforcements that develop the required strength of the pole is permitted, provided the pole above the ground is in good condition and is of sufficient size to develop its required strength.

5. Transverse Strength Requirements for Structures. Where Side Guying Is Required, but Can Only Be Installed at a Distance. Grade B. In the case of structures where, because of very heavy or numerous conductors or relatively long spans, the transverse-strength requirements of this section cannot be met except by the use of side guys or special structures, and it is physically impracticable to employ side guys, the transverse-strength requirements may be met by side-guying the line at each side of and as near as practicable to the crossing or other transversely weak structure, and with a distance between such side-guyed structures of not over 800 feet provided that:
(a) The side-guyed structures for each such section of 800 feet or less shall be constructed to withstand the calculated transverse load due to wind on the supports and ice-covered conductors, on the entire section between the side-guyed structures.

(b) The line between such side-guyed structures shall be substantially in a straight line and the average length of span between the side-guyed structures shall not be in excess of 150 feet.

(c) The entire section between the transversely strong structures shall comply with the highest grade of construction concerned in the given section, except as to the transverse strength of the intermediate poles or towers.

Grade C. The above provision is not applicable to grade C.

6. Longitudinal-strength Requirements for Sections of Higher Grade in Lines of a Lower Grade of Construction.

(a) Methods of Providing Longitudinal Strength. Grade B. The longitudinal-strength requirements for sections of line of higher grade in lines of a lower grade (see for assumed longitudinal loading Order 1262, C, 1) are usually met by placing supporting structures of the required longitudinal strength at either end of the higher-grade section of the line.

Where this is impracticable, the supporting structures of the required longitudinal strength may be located one or more span lengths away from the section of higher grade, within 800 feet on either side and with not more than 800 feet between the longitudinally strong structures, provided such structures, and the line between them meet the requirements, as to transverse strength and stringing of conductors, of the highest grade occurring in the section, and provided that the line between the longitudinally strong structures is approximately straight or suitably guyed.

The requirements may also be met by distributing the head guys over two or more structures on either side of the crossing, such structures and the line between them complying with the requirements for the crossing as to transverse strength and as to conductors and their fastenings.

Where it is impracticable to provide the longitudinal strength, the longitudinal loads shall be reduced by increasing the conductor sags. This may require greater conductor separations. (See Order 1265, A, 2, (a)).

Grade C. The above provision is not applicable to grade C.

(b) Flexible Supports. Grade B. When supports of the section of higher grade are capable of considerable deflection in the direction of the line, as with wood or concrete poles, or some types of metal poles and towers, it may be necessary to increase the normal clearances specified in section 123, or to provide head guys or special reinforcement to prevent such deflection.

So-called flexible steel towers or frames, if used at such locations, shall be adequately reinforced to meet the requirements of Order 1261, A, 3, (b).

---

When the situation is one involving an isolated crossing of higher grade in a line of lower-grade construction, then the structure shall, when practicable, be head-guyed or otherwise reinforced to prevent reduction in the clearances required in section 123.

Grade C. The above provision is not applicable to grade C.

7. Strength at Angles in a Line. At an angle in the line, the strength of a pole at the ground line, if not guyed, or at the point of guy attachment if guyed, shall be sufficient to withstand a combination of the transverse and longitudinal loadings specified in Order 1252, B, 4. For Grade B the transverse load shall be multiplied by 2.0 and for Grade C by 1.5, before combining with the load arising from change in direction of conductors. The allowable percentage of ultimate stress at dead-ends given in rule 1251, A, 4, (b) shall not be exceeded for the total load thus computed.


(b) Steel Poles, or Towers. Steel poles or towers set in earth shall be suitably protected against injurious corrosion at and below the ground line.

2. Strength of Foundations. (a) Steel Supports. The foundations and footings shall be so designed and constructed as to withstand the stresses due to the loads assumed in Order 1252. Steel parts shall withstand these loads with the overload capacity factors specified in Table 16.

Since in many localities the soil and climatic conditions are such as to alter the strength of foundations considerably from time to time, there should usually be provided a considerable margin of strength in foundations above that which (by calculation) will just withstand the loads under the assumption of average conditions of climate and soil.

(b) Wood and Concrete Poles. Foundations and settings for unguyed poles shall be such as to withstand the loads assumed in Orders 1252, A, B, and C.

<table>
<thead>
<tr>
<th>Minimum Depth of Setting Poles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Pole</td>
</tr>
<tr>
<td>Feet</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

(a) Section 109.18 of the Wisconsin Statutes requires poles to be set to a depth of 2 feet at railroad crossings.
C. Guys. 1. General. The general requirements for guys are covered under "Miscellaneous requirements for overhead construction" (see sec. 128).

2. For Poles in Insecure Earth. Where crossing poles are set in insecure earth the transverse strength requirements should, where practicable, be met by the use of side guys or braces.

3. On Steel Structures. The use of guys to obtain compliance with these requirements is regarded as generally undesirable. When guys are necessarily used, the steel supports or towers, unless capable of considerable deflection, shall be regarded as taking all of the load up to their allowable working load, and the guys shall have sufficient strength to take the remainder of the assumed maximum load. (See Order 1261, A, 6, (b) for flexible supports).

4. On Wood or Concrete Poles. When guys are used to meet the strength requirements for wood or concrete poles, they shall be considered as taking the entire load in the direction in which they act, the poles acting as struts only.

Frequently the use of shorter spans or larger poles will permit the omission of guys at crossings.

5. Strength of Guys. (a) Guys when required, shall be of such material and dimensions as will withstand the transverse loads assumed in Order 1252, B, and the longitudinal load assumed in Order 1252, C, without exceeding the following percentages of their ultimate strength:

<table>
<thead>
<tr>
<th></th>
<th>Grade B</th>
<th>Grade C</th>
</tr>
</thead>
<tbody>
<tr>
<td>For transverse strength (when installed)</td>
<td>37.50</td>
<td>20.00</td>
</tr>
<tr>
<td>For longitudinal strength (at all times)</td>
<td>100</td>
<td>No requirement</td>
</tr>
<tr>
<td>In general</td>
<td>(a) 36.70</td>
<td>(a) 37.50</td>
</tr>
<tr>
<td>At dead-ends</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) If deflection of supporting structures is taken into account in the computations, 95\% percent shall be reduced to 80 percent and 97\% percent shall be reduced to 75 percent.

(b) At an angle in the line, the strength of a transverse guy or guys shall be sufficient to withstand the combination of transverse and longitudinal loadings specified in Order 1252, B, 4. The transverse load shall be multiplied by 1.78 for both grades B and C before combining with the load arising from the change in direction of conductors. The allowable percentage of ultimate strength at dead-ends given in (a) above shall not be exceeded for the total load thus computed.

D. Crossarms. 1. Vertical Strength. Crossarms shall, when installed, withstand the vertical loads specified in Order 1252, B, without the stress under these loads exceeding 50 percent of the assumed ultimate stress of the material.

Exception. For built-up steel crossarms on steel structures, see Table 16 for minimum overload capacity factors.

2. Bracing. Crossarms shall be securely supported by bracing, if necessary, so as to support safely all other loads to which they may be subjected in use, including linemen working on them. Any cross-arm or buck arm except the top one shall be capable of supporting a vertical load of 225 pounds at either extremity in addition to the weight of the conductors.

3. Longitudinal Strength. (a) General. Crossarms shall withstand any unbalanced longitudinal loads to which they are exposed, with a limit of unbalanced tension where conductor pulls are normally balanced, of 700 pounds at the outer pin.

(b) At Dead-ends and at Ends of Higher-grade-Construction in Line of Lower Grade. Grade B. Wood crossarms shall be of sufficient strength to withstand at all times, without exceeding their ultimate stresses, an unbalanced pull equal to the tension in all supported conductors under assumed maximum loading as given in Order 1261. Steel arms shall withstand this load with the overload capacity factor for longitudinal loads given in Table 16.

Grade C. The above provisions do not apply to grade C.

(c) At Ends of Transversely Weak Sections. Grade B. The crossarms connected to the structure at each end of the transversely weak section, such as described in Order 1261, A, 5, shall be such as to withstand at all times without exceeding their ultimate stresses, under the conditions of loading prescribed in Order 1251, an unbalanced load equivalent to the combined pull in the direction of the transversely weak section of all the conductors supported.

Grade C. The above provisions do not apply to grade C.

(d) Methods of Meeting Orders 1251, D, 3, (b) and (e). Grade B. Where conductor tensions are limited to a maximum of 2,000 pounds per conductor, double wood crossarms fitted with spacing bolts equipped with spacing nuts and washers, pipe spacers, or similar construction, or with spacing blocks or plates, will be considered as meeting the strength requirements in (b) and (e) preceding.

Grade C. The above provisions do not apply to grade C.

4. Dimensions of Crossarms of Selected Yellow Pine or Fir. The cross-sectional dimensions of selected yellow pine or fir crossarms shall not be less than values of Table 21.

### TABLE 21
Crossarm Cross Sections

<table>
<thead>
<tr>
<th>Number of Pine</th>
<th>Grade B</th>
<th>Grade C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Supply</td>
<td>Communication</td>
</tr>
<tr>
<td>3 or 4</td>
<td>3% by 4</td>
<td>3% by 3%</td>
</tr>
<tr>
<td>6 or 8</td>
<td>5% by 4</td>
<td>5% by 3%</td>
</tr>
<tr>
<td>10</td>
<td>1% by 4</td>
<td>1% by 3%</td>
</tr>
</tbody>
</table>

Note: Sec. 180.10 of the Statutes requires double crossarms at railroad crossings.
5. Where pin-type construction is used, two points of support shall be provided for each conductor by means of double crossarms, double brackets or other adequate means at each crossing structure, at dead ends, and at angles where the unbalanced pull under the conductor loading specified in Order 1251 is such that the ultimate strength of single pin, insulator, crossarm, or bracket would be exceeded.

Exception: Where communication cables or conductors cross below supply conductors and are attached to the same pole, the above does not apply unless another condition which requires double pins and fastenings for the supply conductors is involved.

Grade C. The above provision applies to Grade C where supply conductors of more than 5,000 volts cross over minor communication lines at locations such that the supply pole is more than 6 feet from the nearest communication conductor, unless other means of providing equivalent safety and strength are agreed to by the parties involved.

6. Location. In general, crossarms should be maintained at right angles to the axis of the pole and to the direction of the attached conductors. At crossings, crossarms should be attached to that face of the structure away from the crossing, unless special bracing or double crossarms are used.

E. Pins and Conductor Fastenings. 1. Longitudinal Strength.

(a) General. Pins and ties or other conductor fastenings shall have sufficient strength to withstand an unbalanced tension in the conductor, up to a limit of 700 pounds per pin or fastening.

(b) At Dead-ends and at Ends of Higher-grade Construction in Line of Lower Grade. Grade B. Pins and ties or other conductor fastenings connected to the structure at each end of the higher-grade section shall be of sufficient strength to withstand at all times without exceeding their ultimate strength, an unbalanced pull due to the conductor loading specified in Order 1251.

Grade C. The above provisions do not apply to grade C.

(c) At Ends of Transversely Weak Sections. Grade B. Pins and ties or other conductor fastenings connected to the structure at each end of the transversely weak section as described in Order 1281, A, 5, shall be such as to withstand at all times without exceeding their ultimate strength under the conductor loading prescribed in Order 1251, the unbalanced pull in the direction of the transversely weak section of the conductor supported.

Grade C. The above provisions do not apply to grade C.

(d) Method of Meeting Orders 1281, E, 1, (b), and (c). Grade B. Where conductor tensions are limited to 2,000 pounds and such conductors are supported on pin insulators, double pins, and ties or equivalent fastenings will be considered to meet the requirements (b) and (c) preceding.

Grade C. The above provision does not apply to grade C.

2. Sharp Edges on Fastenings. Tie wires, fastenings or supports shall have no sharp edges or burrs at contacts with the conductors.

3. Height of Pin. The height of the pin and the conductor fastenings and the material and cross section of the pin should be chosen so as to afford the required strength.

Note: The method of attaching conductors by suitable ties to single pin-type insulators mounted on 1½ by 3 inch wood pins or equivalent wood will usually provide strength up to 1,000 pounds conductor tension with the conductor 3½ inches above the crossarm. Steel pins may afford greater strength, both for the pins and for the crossarms.

4. Double Conductor Fastenings. Grade B. Where pin-type construction is used, two points of support shall be provided for each conductor by means of double pins and conductor fastenings for each crossing structure, at dead ends, and at angles where the unbalanced pull under the conductor loading specified in Order 1251 is such that the ultimate strength of a single pin or insulator would be exceeded.

Exception: Where communication cables or conductors cross below supply conductors and are attached to the same pole, the above does not apply unless another condition which requires double pins and fastenings for the supply conductors is involved.

Grade C. The above provision applies to grade C where supply conductors of more than 5,000 volts cross over minor communication lines at locations such that the supply pole is more than 6 feet from the nearest communication conductor, unless other means of providing equivalent safety and strength are agreed to by the parties involved.

F. Open Supply Conductors. 1. Material. Conductors shall be of material or combinations of materials which will not corrode excessively under the prevailing conditions.

Recommendation: It is recommended that hard-drawn or medium-hard-drawn copper wire (conforming to the specifications of the American Society for Testing Materials) be used instead of soft in new construction, especially for sizes smaller than No. 2.

2. Minimum Sizes of Supply Conductors. Supply conductors, both bare and covered, shall have an ultimate strength and an overall diameter of metallic conductor not less than that of medium-hard-drawn copper of the gage size A.W.G. shown in Table 22, except that conductors made entirely of bare or galvanized iron or steel shall have an overall diameter not less than Stl. W.G. of the gage sizes shown.

Exception 1: At railroad crossings, for stranded conductors, other than those in which a central core wire is entirely covered by the outside wires, any individual wire of such a stranded conductor containing steel shall be not less than 0.115 inch in diameter if copper-covered and not less than 0.115 inch in diameter if otherwise protected or if bare.

Exception 2: Supply service leads of 6 to 750 volts may have the sizes set forth in Order 1261, E.

Exception 3: Where the short-span method of construction is employed in accordance with Order 1261, K, the conductor sizes and sag data herein specified are not required.
3. Lightning Protection Wires. The requirements as to size, material, and stringing of wires used as lightning protection wires when placed above and paralleling supply conductors shall be the same as that required for supply conductors.

4. Sags and Tensions. Conductor sags shall be such that, under the assumed loading of Order 1251, the tension of the conductor shall be not more than 60 percent of its ultimate strength. Also the tension at 60°F, without external load, shall not exceed the following percentages of the conductor ultimate strength:

| Initial unloaded tension | 35 percent |
| Final unloaded tension | 25 percent |

Exception: In the case of conductors having a cross-section of a generally triangular shape, such as cables composed of three wires, the final unloaded tension at 60°F shall not exceed 30 percent of the ultimate strength of the conductor.

Note: The above limitations are based on the use of recognized methods for avoiding fatigue failures by minimizing chafing and stress concentration. If such practices are not followed, lower tensions should be employed.

5. Splices and Taps. Grade B. Splices shall as far as practicable be avoided in the crossing and adjacent spans. If it is impracticable to avoid such splices, they shall be of such a type and so made as to have a strength substantially equal to that of the conductor in which they are placed. Taps shall be avoided in the crossing span where practicable, but if required shall be of a type which will not impair the strength of the conductors to which they are attached.

Grade C. The above does not apply to grade C.

6. Trolley Contact Conductors. In order to provide for wear, no trolley contact conductor shall be installed of less size than No. 0, if of copper, of No. 4, if of silicon bronze.

G. Supply Cables. 1. Specially Installed Supply Cables. Cables having effectively grounded continuous metal sheath or armor, where located on jointly used poles, or where located on other poles and having a grade of construction less than that required for open wire supply lines of the same voltage, shall meet the requirements of (a), (b), (c), and (d) below.

(a) Messengers. Messengers shall be stranded and of corrosion-resistant material, and shall not be stressed beyond 60 percent of their ultimate strength under the loadings specified in Order 1251.

(b) Grounding of Cable Sheath and Messenger. Each section of cable between splices shall be suitably and effectively bonded to the messenger wire at not less than two places. The messenger wire shall be grounded at the ends of the line and at intermediate points not exceeding 800 feet apart. (See section 103 for method)

(c) Cable Splices. Splices in the cable shall be made so that their insulation is not materially weaker than the remainder of the cable. The sheath or armor at the splice shall be made electrically continuous.

(d) Cable Insulation. The conductors of the cable shall be insulated so as to withstand a factory potential test of at least twice the operating voltage at operating frequency applied continuously for five minutes between conductors and between any conductor and the sheath or armor.

2. Other Supply Cables. The following requirements apply to all supply cables not included in 1 above.

(a) Messenger. The messenger shall be of corrosion-resistant material, and shall not be stressed beyond 60 percent of its ultimate strength under the loadings specified in Order 1251.

(b) Cable. There are no strength requirements for cables supported by messengers.

H. Open-wire Communication Conductors. Open-wire communication conductors in grade B or C construction shall have the sizes and sags given in Order 1261, F, 2, and 4 for supply conductors of the same grade.

Exception: Where open-wire communication conductors in spans of 150 feet or less are above supply circuits of 5,000 volts or less, grade C sizes and sags may be replaced by grade D sizes and sags, except that where the supply conductors are trolley-contact conductors of 9 to 750 volts, No. 12 hard-drawn copper wire may be used for spans 6 to 100 feet, and No. 19 steel or No. 12 high strength steel wire may be used for spans of 125 to 150 feet.

1. Communication Cables. 1. Metal-sheathed Communication Cables. There are no strength requirements for such cables supported by messengers.

2. Messenger. The messenger shall be of corrosion-resistant material, and shall not be stressed beyond 60 percent of its ultimate strength under the loadings specified in Order 1251.

J. Paired Communication Conductors. 1. Paired Conductors Supported on Messenger.

(a) Use of Messenger. A messenger of corrosion-resistant material may be used for supporting paired conductors in any location, but is only required for supporting conductors crossing over trolley-contact conductors of more than 750 volts.
(b) Sag of Messenger. Messenger used for supporting paired conductors required to meet Grade B construction because of crossing over trolley-contact conductors shall meet the sag requirements for Grade D messengers.

c) Size and sag of Conductors. There are no requirements for paired conductors when supported on messenger.

2. Paired Conductors not Supported on Messenger.

(a) Above Supply Lines. Grade B. Sizes and sags shall be not less than those required by Order 1261, F, 2 and 4 for supply conductors of similar grade.

Grade C. Sizes and sags shall be not less than the following:

Spans 0 to 100 Feet. No sag requirements. Each conductor shall be of corrosion-resistant material, and shall have an ultimate strength of not less than 170 pounds.

Spans 100 to 150 Feet. Sizes and sags shall be not less than required for Grade D communication conductors.

Spans Exceeding 150 Feet. Sizes and sags shall be not less than required for Grade C supply conductors (See Order 1261, F, 4).

(b) Above Trolley-contact Conductors.

Grade B. Sizes and sags shall be not less than the following:

Spans 0 to 100 Feet. No size requirements. Sags shall be not less than for No. 8 A.W.G. hard-drawn copper. (See Order 1261, F, 4)

Spans Exceeding 100 Feet. Each conductor shall be of corrosion-resistant material, and shall have an ultimate strength of not less than 170 pounds. Sags shall be not less than for No. 8 A.W.G. hard-drawn copper. (See Order 1261, F, 4).

Grade C. Sizes and sags shall be as follows:

Spans 0 to 100 Feet. No requirements.

Spans Exceeding 100 Feet. No sag requirements. Each conductor shall be of corrosion-resistant material, and shall have an ultimate strength of not less than 170 pounds.

K. Short-span Crossing Construction. Where supply lines cross over railways or communication lines by the short-span method, the requirements for Grade B or C conductor sags and sizes are waived, in so far as such grades are required by the crossing, provided that an effectively grounded guard arm is installed at each crossing, to prevent conductors which break in either adjoining span from swinging back into the conductors crossed over, or in the case of a railroad crossing into the space between the crossing supports.

Note: The short-span method of crossing requires the cross-over span to be of such height that a conductor breaking in that span cannot come within 15 feet of the ground or rails at a railroad crossing or make contact with any wires crossed over at a wire crossing.

This character of construction is facilitated where the cross-over supports can be placed quite near together and in the case of wire crossings where the span crossed over is at a minimum elevation above ground.

L. Cradles at Supply Line Crossings. Cradles should not be used.

Note: It is less expensive and better to build the supply line strong enough to withstand extreme conditions than to build a cradle of sufficient strength to catch and hold the supply line if it falls.

M. Protective Covering or Treatment for Metal Work. All hardware, including bolts, washers, nuts, anchor rods and similar parts of material subject to injurious corrosion under the prevailing conditions, shall be protected by galvanizing, painting, or other treatment which will effectively retard corrosion.

Order 1262. Grade D Construction.

A. Poles. 1. Strength of Unguyed Poles. Unguyed poles, except as provided in Order 1262, A, 8 shall withstand the vertical and transverse loads specified in Order 1262, A and B, and the longitudinal loads specified in Order 1262, C, 4, without exceeding the following percentages of their ultimate stress.

<table>
<thead>
<tr>
<th>For transverse loads:</th>
<th>Percentages of Ultimate Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>When installed</td>
<td>25.0</td>
</tr>
<tr>
<td>At replacement</td>
<td>15.0</td>
</tr>
<tr>
<td>For longitudinal loads</td>
<td></td>
</tr>
<tr>
<td>When installed</td>
<td>25.0</td>
</tr>
<tr>
<td>At replacement</td>
<td>100.0</td>
</tr>
</tbody>
</table>

2. Strength of Guyed Poles. Where poles are guyed, the poles shall be considered as acting as struts, resisting the vertical component of the tension in the guy calculated as in Order 1262, C combined with the vertical load.

3. Strength Requirements for Poles Where Guying Is Required, but Can Only be Installed at a Distance. Where on account of physical conditions it is impracticable to guy or brace the crossing poles as specified in Order 1262, C, the requirements there given may be met by head-guying and side-guying the line as near as practicable to the crossing, but at a distance not exceeding 500 feet from the nearest crossing pole, provided that the line is approximately straight and that a stranded steel wire or other standard strand of strength equivalent to that of the head guy is run between the two guyed poles, being attached to the guyed poles at the point at which the head guys are attached, this wire being securely attached to every pole between the guyed poles.

4. Pole Locations at Crossings. Where communication lines cross over railroads, the poles shall be located as follows: (See Section 180.18 Statutes)

(a) The poles supporting the crossing span and the adjacent spans should be located in a straight line, if practicable. Where the poles supporting the crossing span and the adjacent spans are
not in line, additional guying shall be placed to take care of the unbalanced load.

(b) The crossing span shall, where practicable, not exceed 100 feet.

5. Freedom from Defects. Wood poles shall be of suitable and selected timber free from observable defects that would decrease their strength or durability.

6. Minimum Pole Sizes. Wood poles shall have a nominal top circumference of not less than 15 inches.

7. Spliced and Stub-reinforced Poles. Spliced poles shall not be used at Grade D crossings.

The use of stub reinforcements that develop the required strength of the pole is permitted, provided the pole above the ground is in good condition and is of sufficient size to develop its required strength.

b) 8. Poles Located at Crossings Over Spur Tracks. Where a communication line paralleling a railroad track on the right of way of the railroad crosses a spur or stub track without any change in the general direction of line, the transverse strength requirements for Grade D construction may be met without the use of side guys, providing the pole is not stressed beyond one-third its ultimate stress. No requirements for longitudinal strength are made if the conductor tensions are balanced. Where conductor tensions are not balanced, due to a small angle in the line at one or both poles, or to dead-ending any of the wires, either guys or braces shall be installed capable of withstanding such unbalanced tensions.

B. Pole Setting. Foundations and settings for unguyed poles shall be such as to withstand the loads assumed in Order 1252, A, B, and C (See Section 180.18 of the Wisconsin Statutes and Order 1261, B, 2, b).

C. Guys. 1. General. The general requirements for guys are covered under "Miscellaneous requirements for overhead construction" (Sec. 128).

2. Where Used. Side guys or braces shall be used on poles supporting the crossing span to withstand the loads put upon them in accordance with the conditions specified in Order 1252, B.

Head guys shall be installed in accordance with Table 23.

Exception 1: Side guys are not required where the crossing poles have the transverse strength specified in Order 1242, A, 1, without the reduction for conductor shielding specified in Order 1252, B, 1 and 2.

Exception 2: Head guys are not required where the crossing poles have the longitudinal strength specified in Order 1259, A or where they carry a cable supported on 6,000 pound or stronger messenger.

Exception 3: Where a line crossing a railroad changes direction more than 10 degrees at either crossing support, the side guy within the angle may be omitted and the head guy, if required, shall be placed in the direction of the adjacent span unless the angle of turn is greater than 60 degrees.

Exception 4: Guying may be omitted where communication lines cross over spur or stub tracks as provided in Order 1262, A, 5.

Exception 5: This rule does not apply to crossing poles under the special conditions set forth in Order 1262, A, 3.

### Table 23

<table>
<thead>
<tr>
<th>Number of Wires</th>
<th>Ratio of Guy Lead to Height Not Less Than</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/4</td>
</tr>
<tr>
<td>2</td>
<td>4,000</td>
</tr>
<tr>
<td>4</td>
<td>4,000</td>
</tr>
<tr>
<td>6</td>
<td>6,000</td>
</tr>
<tr>
<td>8</td>
<td>10,000</td>
</tr>
<tr>
<td>10</td>
<td>16,000</td>
</tr>
<tr>
<td>30</td>
<td>20,000</td>
</tr>
<tr>
<td>50</td>
<td>30,000</td>
</tr>
<tr>
<td>60</td>
<td>40,000</td>
</tr>
<tr>
<td>80</td>
<td>60,000</td>
</tr>
</tbody>
</table>

Note to Table 23. This table is based on ultimate or breaking strength of guys equal to seven-sixths of the nominal strengths shown in the table and a wire load of 50 percent No. 8 B.W.O. iron and 50 percent No. 9 A.W.O. copper with an average pull of 494.75 pounds per wire. No guy will be required for a cable, since the suspension strands serves as a head guy.

3. Guys Used for Transverse Strength. Side guys used in straight sections of line shall be considered as taking the entire load in the direction in which they act, without exceeding 37.5 percent of their ultimate strength.

4. Guys Used for Longitudinal Strength.

(a) Direction of Head Guys. Where head guys are required, they shall be installed in the direction away from the crossing.

(b) Size and Number of Head Guys. Guys, if required for various open-wire loads, shall be in accordance with Table 23.

5. Maintenance. Guys and anchors shall be maintained so that the guys carry the load.

D. Crossarms. 1. Material. Wood crossarms supporting the crossing span shall be of yellow pine, fir, or other suitable timber.

2. Minimum Size. (a) Wood Crossarms. Wood crossarms shall have a cross-section not less than the following:

<table>
<thead>
<tr>
<th>Maximum Number of Wires to be Carried</th>
<th>Nominal Length</th>
<th>Nominal Cross-section (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feet</td>
<td>Inches</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4\frac{1}{4} by 4\frac{1}{4}</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4\frac{1}{4} by 4\frac{1}{4}</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4\frac{1}{4} by 4\frac{1}{4}</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>6\frac{1}{4} by 6\frac{1}{4}</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>8\frac{1}{4} by 8\frac{1}{4}</td>
</tr>
<tr>
<td>12 (a)(b)</td>
<td>10</td>
<td>10\frac{1}{4} by 10\frac{1}{4}</td>
</tr>
</tbody>
</table>

(a) Where crossarms are bored for 3\frac{1}{4} inch steel pins, 8-inch by 1\frac{1}{4}-inch crossarms may be used.

(b) Maximum number allowed.
(b) Steel or Iron Crossarms. Galvanized or painted iron or steel crossarms of strength equal to wood crossarms may be used.

3. Double Crossarms. Crossarms and insulators shall be double on the crossing poles. The crossarms shall be held together with properly fitted spacing blocks or bolts placed immediately adjoining the outside pins. Spacing blocks or spacing bolts are not required for two-pin crossarms.

E. Brackets and Racks. Wood brackets may be used only if used in duplicate or otherwise designed so as to afford two points of support for each conductor. Single metal brackets, racks, drive hooks or other fixtures may be used if designed and attached in such a manner as to withstand the full dead-end pull of the wires supported.

F. Pins. 1. Material. Insulator pins shall be of steel, wrought iron, malleable cast iron, or locust or equivalent wood.

2. Strength. Insulator pins shall have sufficient strength to withstand the loads to which they may be subjected.

3. Size. (a) Wood Pins. Wood pins shall be sound and straight-grained with a diameter of shank not less than 1/4 inch.

(b) Metal Pins. Steel or iron pins shall have diameter of shank not less than one-half inch.

G. Insulators. Each insulator shall be of such pattern, design and material that when mounted it will withstand without injury and without being pulled off the pin, the ultimate strength of the conductor attached to the insulator.

H. Attachment of Conductor to Insulator. The conductors shall be securely tied to each supporting insulator.

I. Conductors. 1. Material. Conductors shall be of material or combinations of materials which will not corrode excessively under the prevailing conditions.

2. Size. Conductors of the crossing span, if of hard-drawn copper or galvanized steel, shall have sizes not less specified in (a) and (b) below. Conductors of material other than the above shall be of such size and so strung as to have a mechanical strength not less than that of the sizes of copper conductors given in (a) and (b) below.

(a) Spans not Exceeding 150 Feet. The sizes in Table 24 apply.

### Table 24

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum Wire Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A. W. G. for Copper; Stl. W. G. for Steel)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conductor</th>
<th>Spans of 125 Feet or Less</th>
<th>Spans of 125 Feet to 150 Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper, hard-drawn</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Steel, galvanized</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

(b) Spans Exceeding 150 Feet. If spans in excess of 150 feet are necessary, the size of conductors specified above or the sizes of the conductors shall be correspondingly increased.

---

3. Paired Conductors Without Messengers. Paired wires without a supporting messenger shall be eliminated as far as practicable and where used shall meet the following requirements:

(a) Material and Strength. Each conductor shall be of material or combinations of materials which will not corrode excessively under the prevailing conditions and shall have an ultimate strength of not less than 170 pounds.

(b) Limiting Span Lengths. Paired wires shall in no case be used without a supporting messenger in spans longer than 100 feet.

4. Sags. Table 25 specifies the recommended sags for wires shown in Table 24.

### Table 23

<table>
<thead>
<tr>
<th>Stringing Sags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Span</td>
</tr>
<tr>
<td>100°F.</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>85</td>
</tr>
<tr>
<td>95</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>160</td>
</tr>
<tr>
<td>170</td>
</tr>
</tbody>
</table>

5. Splices and Taps. Splices shall as far as practicable be avoided in the crossing and adjacent spans. If it is impracticable to avoid such splices, they shall be of such a type and so made as to have a strength substantially equal to that of the conductor in which they are placed.

Taps shall be avoided in the crossing span where practicable, but if required shall be of a type which will not impair the strength of the conductors to which they are attached.

J. Messengers. 1. Minimum Size. (a) Spans not Exceeding 150 Feet. Table 26 gives the minimum sizes of galvanized steel-strand messenger to be used for supporting different sizes of cables:

### Table 26

<table>
<thead>
<tr>
<th>Minimum Sizes of Messenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of Cable in Weight per Foot</td>
</tr>
<tr>
<td>Pounds</td>
</tr>
<tr>
<td>Less than 2.55 pounds</td>
</tr>
<tr>
<td>2.55 to 5 pounds</td>
</tr>
<tr>
<td>5,000</td>
</tr>
<tr>
<td>10,000</td>
</tr>
</tbody>
</table>
(b) Spans Exceeding 150 Feet. For spans exceeding 150 feet or for heavier cables a proportionately larger messenger or other proportionately stronger means of support shall be used.

2. Sags and Tensions. Multiple-wire cables and their messengers shall be so suspended that when they are subjected to the loading prescribed in Order 1251, the tension in the messenger will not exceed 60 percent of its ultimate strength.

Order 1263. Grade N. Construction.

A. Poles and Towers. Poles used for lines for which neither grade B, C, or D is required shall be of such initial size and so guyed or braced, where necessary, as to withstand safely the loads to which they may be subjected including linemen working on them.

B. Guys. The general requirements for guys are covered under "Miscellaneous Requirements" (sec. 128).

C. Crossarm Strength. Crossarms shall be securely supported, by bracing if necessary so as to support safely loads to which they may be subjected in use, including linemen working on them. Any crossarm, or buckarm, except the top one, shall be capable of supporting a vertical load of 225 pounds at either extremity in addition to the weight of the conductors.

D. Supply-line Conductors. 1. Material. All supply-line conductors shall be of material or combinations of materials which will not corrode excessively under the prevailing conditions.

2. Sizes. Supply-line conductors shall be not smaller than the following:

<table>
<thead>
<tr>
<th>TABLE 27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade N Minimum Gauge Sizes for Supply-line Conductors</td>
</tr>
<tr>
<td>(A. W. G. for copper and aluminum; Stl. W. G. for steel)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>Soft-drawn</th>
<th>Medium or Hard-drawn</th>
<th>Steel Wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft copper</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Medium or hard-drawn copper</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Steel</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Urban and Rural:

<table>
<thead>
<tr>
<th>Span</th>
<th>Soft-drawn</th>
<th>Medium or Hard-drawn</th>
<th>Steel Wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 Ft. or Less</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>150 Ft. Exceeding</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Recommendation: It is recommended that, except as modified in Order 1251, F. 2, these minimum sizes for copper and steel not be used in spans longer than 150 feet.

E. Supply Services. 1. Material. All supply service conductors shall be of material or combinations of materials which will not corrode excessively under the prevailing conditions and the ungrounded service conductors extending from the service entrance to the first pole shall have rubber or approved equivalent insulation if in a raceway; and rubber, weatherproof, or approved equivalent insulation where exposed.

2. Size of Open-wire Services. (a) Not over 750 Volts. Supply-service leads of not over 750 volts shall be not smaller than required by (1) or (2) below.

(1) Spans Not Exceeding 150 Feet. Sizes shall be not smaller than specified in Table 28.

<table>
<thead>
<tr>
<th>TABLE 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Sizes of Service Leads Carrying 750 Volts or Less</td>
</tr>
<tr>
<td>(A.W.G. for Copper; Stl. W.G. for Steel)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Situation</th>
<th>Copper Wire</th>
<th>Steel Wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alone</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Over supply conductors of 6-750 volts</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>750 to 8,750 volts (a)</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Over trolley conductors</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>6 to 750 volts a. c. or d. c.</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Exceeding 750 volts d. c.</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

(a) Installation of service leads of not more than 750 volts over supply lines of more than 750 volts should be avoided where practicable.

(2) Spans Exceeding 150 Feet. Sizes shall be not smaller than required for Grade C (Order 1261, F. 2).

(b) Exceeding 750 Volts. Sizes of supply-service leads of more than 750 volts between conductors shall be not less than required for supply line conductors of the same voltage.

3. Sag, Open-wire Services. (a) Not over 750 Volts. Supply service leads of not over 750 volts shall have sags not less than shown in Table 29.

| TABLE 29 |
| Sags for Open-Wire Services |

<table>
<thead>
<tr>
<th>Sag (in feet)</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 or less</td>
<td>12</td>
</tr>
<tr>
<td>100 to 150</td>
<td>12</td>
</tr>
<tr>
<td>150 to 190</td>
<td>12</td>
</tr>
<tr>
<td>Exceeding 150</td>
<td>27</td>
</tr>
</tbody>
</table>

(b) Exceeding 750 Volts. Supply service leads of more than 750 volts shall comply as to sags with the requirements for supply line conductors of the same voltage.
4. Cabled Services. Supply service leads may be grouped together in a cable, provided the following requirements are met:

(a) Size. The size of each conductor shall be not less than required for leads of separate conductors (Order 1263, E, 2).

(b) Sag. The sag of the cable should be not less than required for leads of separate conductors. (Order 1263, E, 3).

(c) Insulation. The insulation should be sufficient to withstand twice the normal operating voltage.

F. Lightning Protection Wires. The requirements as to size and materials for wires used as lightning protection wires when placed above and paralleling supply conductors shall be the same as that required for supply conductors.

G. Trolley Contact Conductors. In order to provide for wear, no trolley contact conductors shall be installed of less size than No. 0, if of copper, or No. 4, if of silicon bronze.

H. Cradles at Supply-line Crossings. Cradles should not be used.

Note: It is less expensive and better to build the supply line strong enough to withstand extreme conditions than to build a cradle of sufficient strength to catch and hold the supply line if it fails.

I. Communication Conductors. There are no specific requirements for Grade N communication line conductors or service drops.

SECTION 127. LINE INSULATORS

Order 1270. Application of Rule.

These requirements apply only to supply lines in situations where grade B construction is required. (See Order 1242, E, for insulation requirements for neutral conductors)

Order 1271. Material and Marking.

Insulators for operation on supply circuits at voltages of 2,300 and above shall be of porcelain, made by the wet process of one equally suitable as regards electrical and mechanical properties, or other material which will give equally good results in respect to mechanical and electrical performance and durability. They should be marked by the maker with his name, trade-mark, or identification number so applied as not to reduce the electrical or mechanical strength of the insulator.

Order 1272. Electrical Strength of Insulators in Strain Position.

Where insulators are used in strain position they shall have not less electrical strength than the insulators generally used on the line when made: the normal mechanical stresses imposed by the loadings specified in section 126.

Order 1273. Ratio of Flash-over to Puncture Voltage.

Insulators shall be designed so that their dry flash-over voltage is not more than 75 percent of their puncture voltage at a frequency of 60 cycles per second.

Order 1274. Test Voltages.

Insulators when tested under American Standards Association specifications shall not flash-over at values less than given in Table 30.

<table>
<thead>
<tr>
<th>Nominal Voltage Between Conductor</th>
<th>Minimum Test Dry Flash-over Voltage of Insulators</th>
<th>Nominal Voltage Between Conductor</th>
<th>Minimum Test Dry Flash-over Voltage of Insulators</th>
</tr>
</thead>
<tbody>
<tr>
<td>750</td>
<td>5,000</td>
<td>45,000</td>
<td>125,000</td>
</tr>
<tr>
<td>7,000</td>
<td>500,000</td>
<td>27,000</td>
<td>175,000</td>
</tr>
<tr>
<td>13,000</td>
<td>40,000</td>
<td>31,000</td>
<td>318,000</td>
</tr>
<tr>
<td>20,000</td>
<td>55,000</td>
<td>278,000</td>
<td>500,000</td>
</tr>
<tr>
<td>31,500</td>
<td>100,000</td>
<td>193,000</td>
<td>645,000</td>
</tr>
</tbody>
</table>

(Interpolate for intermediate values)

Order 1275. Factory Tests.

Each insulator or insulating part thereof for use on lines operating at voltages in excess of 15,000 volts between conductors shall be subjected to a routine dry flash-over test at the factory for a period of three minutes at a frequency of 60 cycles per second or to any other test sanctioned by good modern practice, such as high-frequency tests.

Order 1276. Selection of Insulators.

A. Insulation of Constant-current Circuits. Insulators for use on constant-current circuits shall be determined on the basis of the nominal full-load voltage of the circuit.

B. Insulators for Single-phase Circuits Directly Connected to Three-phase Circuits. Insulators used on single-phase circuits directly connected to three-phase circuits (without intervening transformers) shall have a flash-over voltage not less than that required for the insulators on the three-phase circuits.

C. Insulators for Nominal Voltages Between Conductors. In selecting insulators of the test voltage to be used for any nominal voltage between conductors, consideration shall be given to the conditions under which the line will operate as follows:

1. Where the system is of moderate extent, in open country, subject to intermittent rains and moderate lightning, insulators having flash-over values not less than given in Table 30 shall be used.
2. Where operating conditions are more severe than set forth in 1 above, due to extent of system, prevalence of exceptionally severe lightning, bad atmospheric conditions (caused by chemical fumes, smoke, cement dust, salt fog, or other foreign matter), or to a long, dry season with heavy dust accumulation followed by moisture, insulators having a higher flash-over than given in Table 30 or other equally effective means of increasing insulation shall be used. The increase is to be determined by local conditions and experience.

Order 1277. Protection Against Arcing.

In installing the insulators and conductors, such precautions as are sanctioned by good modern practice shall be taken to prevent, as far as possible, any arc from forming or to prevent any arc which might be formed from injuring or burning any parts of the supporting structures, insulators or conductors which might render the conductors liable to fall. In no case shall the insulation at crossings be less than that employed in adjacent sections of the line.

SECTION 128. MISCELLANEOUS REQUIREMENTS FOR OVERHEAD LINES

Order 1280. Supporting Structures.

A. Poles and Towers. 1. Rubbish. Poles and towers should be placed, guarded, and maintained so as to be exposed as little as practicable to brush, grass, rubbish, or building fires.

2. Guarding Poles. (a) Protection Against Mechanical Injury. Where poles and towers are exposed to abrasion by traffic or to other damage which would materially affect their strength, they shall be protected by guards.

(b) Protection Against Climbing. On closely latticed poles or towers carrying supply conductors exceeding 300 volts, either guards or warning signs shall be used except as follows: See 1214 C.

Exception 1: Where the right of way is completely fenced.

Exception 2: Where the right of way is not completely fenced, provided the pole or tower is not adjacent to roads, regularly traveled thoroughfares, or places where people frequently gather, such as schools or public playgrounds.

3. Warning Signs. (a) On Poles or Towers. For warning signs on poles or towers, see Order 1289, A, 2, (b) and 1214, C.

Exception: Because of the difficulty of maintaining stenciled signs on a crooked surface, metal signs may be used on crooked poles.

(b) On Bridge Fixtures. Structures attached to bridges for the purpose of supporting conductors shall be plainly marked with the name, initials, or trade mark of the utility responsible for the attachment and, in addition, where the voltage exceeds 750 volts, by the following sign or its equivalent. "Danger: High Voltage" (See Orders 1214, C, 2 and 3).

4. Grounding Metal Poles. Metal poles not guarded or isolated shall always be specially grounded where in contact with metal-sheathed cable or the metal cases of equipment operating at voltages exceeding 750 volts.

Metal poles not guarded, isolated, or specially grounded should always be considered as imperfectly grounded and the insulators supporting line conductors as well as the strain insulators in attached span wires should therefore, have a suitable margin of safety and be maintained with special care to prevent leakage to the pole as far as practicable.

5. Pole Steps. (a) Metal Steps. Steps closer than 6½ feet from the ground or other readily accessible place shall not be placed on poles.

(b) Wood Blocks. One wood block (or on private right of way more than one) may be placed on poles carrying communication cables or conduits below supply conductors; but the lowest block is not to be less than 3½ feet from the ground or other readily accessible place. On poles carrying only communication conductors, additional wood blocks may be used.

6. Identification of Poles. Poles, towers and other supporting structures on which are maintained electrical conductors shall be so constructed, located, marked, or numbered as to facilitate identification by employees authorized to work thereon. Date of installation of such structures shall be recorded where practicable by the owner.

7. Obstructions. All poles should be kept free from posters, bills, tacks, nails, and other unnecessary obstructions, such as through bolts not properly trimmed.

B. Crossarms. 1. Location. In general, crossarms should be maintained at right angles to the axis of the pole and to the direction of the attached conductors, and at crossings should be attached to that face of the structure away from the crossing, unless special bracing or double crossarms are used.

Note: Double crossarms are generally used at crossings, unbalanced corners, and dead-ends in order to permit conductor fastenings at two insulators and so prevent slipping, although single crossarms might provide sufficient strength. To secure extra strength, double crossarms are frequently used and crossarm guys are sometimes used.

2. Bracing. Crossarms shall be securely supported, by bracing if necessary, so as to support safely loads to which they may be subjected, including linemen working on them. Any crossarm or buck-arm, except the top one, shall be capable of supporting a vertical load of 325 pounds at either extremity in addition to the weight of the conductors.

C. Unusual Conductor Supports. Where conductors are attached to structures other than those used solely or principally for supporting the lines, all rules shall be complied with as far as they apply and such additional precautions as may be deemed necessary by the ad
ministrative authority shall be taken to avoid injury to such structures or to the person using them. The supporting of conductors on trees and roofs should be avoided where practicable.

Order 1281. Tree Trimming.

A. General. Where trees exist near supply-line conductors, they shall be trimmed, if practicable, so that neither the movement of the trees nor the swinging or increased sagging of conductors in wind or ice storms or at high temperatures will bring about contact between the conductors and the trees. (See Sections 66.02, 61.66 and 96.16 of the 1949 Wisconsin Statutes).

Exception: For the lower-voltage conductors, where trimming is difficult, the conductor may be protected against abrasion and against grounding through the tree by interposing between it and the tree a sufficiently nonabsorptive and substantial insulating material or device.

B. At Wire Crossings and Railroad Crossings. The crossing span and the next adjoining spans shall be kept free, as far as practicable, from overhanging or decayed trees which might fall into the line.

Order 1282. Guying.

A. Where Used. When the loads to be imposed on poles, towers, or other supporting structures are greater than can safely be supported by the poles or towers alone, additional strength shall be provided by the use of guys, braces, or other suitable construction.

Guys shall be used also, where necessary, wherever conductor tensions are not balanced, as at corners, angles, dead-ends, and changes of grade of construction.

Note: This is to prevent undue increase of sags in adjacent spans as well as to provide sufficient strength for those supports on which the loads are considerably unbalanced.

B. Strength. The strength of the guy shall meet the requirements of Section 126 for the grade of construction that applies.

When guys are used with wood or other poles or towers capable of considerable deflection before failure, the guys shall be able to support the entire load in the direction in which they act, the pole acting simply as a strut.

C. Point of Attachment. The guy should be attached to the structure as near as practicable to the center of the conductor load to be sustained, but for voltages exceeding 5,700 volts the insulation afforded by wood crossarms and poles should not be reduced any more than necessary.

D. Guy Fastenings. Guys should be stranded and where attached to anchor rods should be protected by suitable guy thimbles or their equivalent. Cedar and other soft wood poles around which any guy having a strength of 10,000 pounds or more is wrapped should be protected by the use of suitable guy shims and, where there is a tendency for the guy to slip off the shim, guy hooks or other suitable means of preventing this action should be used. Shims are not necessary in the case of supplementary guys, such as storm guys.

E. Guy Guards. The ground end of all guys attached to ground anchors exposed to traffic shall be provided with a substantial and conspicuous wood or metal guard not less than 8 feet long.

Recommendation: It is recommended that in exposed or poorly lighted locations such guards be painted white or some other conspicuous color.

F. Insulating Guys from Metal Poles. Where anchors would otherwise be subject to electrolysis, guys attached to metal poles or structures and not containing guy insulators should be insulated from the metal pole or structure by suitable blocking.

G. Anchor Rods. Anchor rods shall be installed so as to be in line with the pull of the attached guy when under load, except in rock or concrete. The anchor rod shall have an ultimate strength in the eye and shank equal to that required of the guy.

H. Grounding. The anchored end of guys attached to wood poles carrying circuits of more than 15,000 volts shall be effectively grounded (see section 105 for method) wherever this part of the guy has a clearance of less than 8 feet to ground.

Exception 1: This does not apply to guys in rural districts.

Exception 2: This does not apply if the guy contains an insulator which will meet the requirements of Order 1282, A. 2 for the highest voltage liable to be impressed on it.

Order 1283. Insulators in Guys Attached to Poles and Towers.

A. Properties of Guy Insulators. 1. Material. (a) Grade B. Guy insulators shall be made by the wet-porcelain process or a process equally suitable as regards electrical and mechanical properties.

(b) Grades C, D, and N. No requirements are made for material.

2. Electrical Strength. Guy insulators shall have a dry flash-over voltage at least double the normal line voltage and a wet flash-over voltage at least as high as the normal line voltage between conductors.

3. Mechanical Strength. Guy insulators shall have a mechanical strength at least equal to that required of the guys in which they are installed.

B. Use of Guy Insulators. 1. One Insulator. An insulator shall be located in each guy which is attached to a pole or structure carrying any supply conductors of more than 300 volts and not more than 15,000 volts, or in any guy which is exposed to such voltages. This guy insulator shall be located not less than 8 feet above the ground.

Exception 1: A guy insulator is not required where the guy is guarded under the conditions set forth in 4 following.

Exception 2: A guy insulator is not required if the guy is attached to a pole on private right of way carrying no supply circuits whose voltage exceeds 550 volts or where transmitted power exceeds 2,000 watts.

Exception 3: A guy insulator is not required if all supply conductors are in a cable having a grounded metal sheath or supported by a grounded messenger.
2. Two Insulators. Where a guy attached to any pole carrying communication or supply conductors or both, is carried over or under overhead supply conductors of more than 300 volts and where hazard would otherwise exist, two or more guy insulators shall be placed so as to include the exposed section of the guy between them as far as possible. Neither insulator shall be within 8 feet of the ground.

Exception: Those insulators are not required where the guy is grounded under the conditions set forth in 4 following.

3. Relative Location of Insulators in Guys Located One Above the Other. Where guys in which it is necessary to install insulators are so arranged that one crosses or is above another, insulators shall be so placed that in case any guy sags down upon another the insulators will not become ineffective.

4. Grounding of Guys. Insulators are not required in guys under the following conditions:

(a) Where the guy is electrically connected to grounded steel structures or to a ground connection on wood poles.

(b) Where the guys are uniformly effectively grounded throughout any system of overhead lines.

(c) Where the guys are connected to a line conductor grounded as specified in 1031, B, 5 (b).

Order 1284. Span-wire Insulators.

A. Mechanical Strength. Span-wire insulators shall have a mechanical strength at least equal to that required of the span wire in which they are installed.

B. Use of Span-wire Insulators. All span wires, including bracket span wires, shall have a suitable strain insulator (in addition to an insulated hanger if used) inserted between each point of support of the span wire and the lamp or trolley contact conductor supported, except that single insulation, as provided by an insulated hanger, may be permitted when the span wire or bracket is supported on wooden poles supporting only trolley, railway feeder, or communication conductors used in the operation of the railway concerned. In case insulated hangers are not used, the strain insulator shall be located so that in the event of a broken span wire the energized part of the span wire cannot be reached from the ground.

Exception: This rule does not apply to insulated feeder tapes used as span wires.

Order 1285. Overhead Conductors.

A. Identification. All conductors of electrical supply and communication lines should be arranged to occupy definite positions throughout, as far as practicable, or shall be so constructed, located, marked, or numbered, or attached to distinctive insulators or crossarms, as to facilitate identification by employees authorized to work thereon. This does not prohibit systematic transposition of conductors.

B. Branch Connections. 1. Accessibility. Connections of branches to supply circuits, service drops, and equipment in overhead construction shall be readily accessible to authorized employees. When possible, connections shall be made at poles or other structures.

2. Clearance. Branch connections shall be supported and placed so that swaging or sagging cannot bring them in contact with other conductors, or interfere with the safe use of pole steps, or reduce the climbing or lateral working space.

C. Common Neutral. Primary and Secondary Circuits may utilize a single conductor as a common neutral if such conductor is grounded as indicated in 1031, B, (4) and (5).

Order 1286. Equipment on Poles.

A. Identification. All equipment of electrical supply and communication lines should be arranged to occupy definite positions throughout, as far as practicable, or shall be constructed, located, marked, or numbered so as to facilitate identification by employees authorized to work thereon.

B. Location. Transformers, regulators, lightning arresters, and switches when located below conductors or other attachments shall be mounted outside of the climbing space. This equipment shall be so placed that unguarded conductors entering the equipment will have clearances from ground specified in Table 2, Order 1232, C.

C. Guarding. Current-carrying parts of switches, automatic circuit breakers, and lightning arresters shall be suitably encased or guarded if all the following conditions apply:

1. If of more than 300 volts, and
2. If located on the climbing side of the pole less than 20 inches from the pole center, and
3. If located below the top crossarm.

D. Hand Clearance. All current-carrying parts of switches, fuses, lightning arresters, also transformer connections and other connections which may require operation or adjustment while alive and are exposed at such times, shall be arranged so that in their adjustment while alive the hand need not be brought nearer to any other current-carrying part at a different voltage than the clearances from pole surfaces required in Table 9, Order 1236, A, 3, (a), for conductors of corresponding voltages. (See also Orders 1422, A, B, and C, part 4 of this code, for clearances from live parts).

E. Street-lighting Equipment. 1. Clearance from Pole Surface. All exposed metal parts of lamps and their supports (unless effectively insulated from the current-carrying parts) shall be maintained at the following distances from the surface of wood poles:

<table>
<thead>
<tr>
<th>Description</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) In general</td>
<td>20</td>
</tr>
<tr>
<td>(b) If located on the side of the pole opposite the designated climbing side</td>
<td>5</td>
</tr>
</tbody>
</table>

Exception: This does not apply where lamps are located at pole tops,
2. Clearance Above Ground. Street lamps shall be mounted at
not less than the following heights above ground.

<table>
<thead>
<tr>
<th>Height</th>
<th>Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over walkways</td>
<td>10</td>
</tr>
<tr>
<td>Connected to circuits of 160 volts or less</td>
<td>14</td>
</tr>
<tr>
<td>Connected to circuits of more than 160 volts</td>
<td>18</td>
</tr>
</tbody>
</table>

Note: Drops to street lights need have no greater clearance than the
street lights themselves.

3. Horizontal Clearances. Arc and incandescent lamps in series
circuits should have at least 3 feet horizontal clearance from windows,
porches, and other spaces accessible to the general public.

4. Material of Suspension. The lowering rope or chain for lighting
units arranged to be lowered for examination or maintenance,
shall be of a material and strength designed to withstand climatic
conditions and to sustain the lighting unit safely. The lowering rope
or chain, its supports, and fastenings shall be examined periodically.

5. Insulators in Suspension Ropes. Effective insulators as specified
in Order 1288, A, shall be inserted at least 8 feet from the ground
in metallic suspension ropes or chains supporting lighting units of
series circuits.

6. Arc-lamp Disconnectors. A suitable device shall be provided by
which each arc lighting unit on series circuits of more than 300
volts may be safely and entirely disconnected from the circuit before
the lamp is handled unless the lamps are always worked on from
suitable insulating stools, platforms, or tower wagons, or handled
with suitable insulating tools, and treated as under full voltage of the
circuit concerned.

7. Grounding Lamp Posts. Metal lamp posts shall be effectively
grounded.

F. Transformers. Transformers mounted on arms or poles on
public thoroughfares shall be at a height above ground not less than
10 feet where over walkways and not less than 15 feet where over
roadways.

Exception: Where it is the established practice to mount transfor-
mers at lesser distances above ground, such practice may be continued if
the reduced mounting heights are carefully maintained.

Order 1237. Protection for Exposed Overhead Communication Lines.

A. Open Wire. Communication lines for public use and fire-alarm
lines shall be treated as follows if at any point they are exposed to
supply (including trolley) lines of more than 400 volts.

1. At stations for public use they shall be protected by one of the
methods specified in part 3, section 13-800.

2. Elsewhere they shall be isolated by elevation or otherwise
guarded so as to be inaccessible to the public.

B. Metal-sheathed Cable. Metal-sheathed cables and messengers
shall be isolated or grounded in conformity with the general require-
ments of section 121.

Order 1288. Circuits of one Class Used Exclusively in the Operation
of Circuits of Another Class.

A. Overhead Communication Circuits Used Exclusively in the Op-
eration of Supply Circuits. 1. Choice of Method. Communication cir-
cuits used exclusively in the operation of supply lines may be run
either as ordinary communication circuits or as supply circuits under
the conditions specified in 3 and 4 of this rule, respectively. After
selection of the type of communication-circuit construction and pro-
tection for any section which is isolated, or is separated by trans-
formers, such construction and protection shall be consistently adhered
to throughout the extent of such isolated section of the communication
system.

2. Guarding. Communication circuits used in the operation of
supply lines shall be isolated by elevation or otherwise guarded at all
points so as to be inaccessible to the public.

3. Where Ordinary Communication Line Construction May Be
Used. Communication circuits used in the operation of supply lines
may be run as ordinary communication conductors under the follow-
ing conditions:

(a) Where such circuits are below supply conductors in the op-
eration of which they are used (including high voltage trolley feed-
ers) at crossings, conflicts, or on commonly used poles, provided:

1) Such communication circuits occupy a position below all
other conductors or equipment at crossings, conflicts or on commonly
used poles.

(b) Such communication circuits and their connected equipmen-
t are adequately guarded and are accessible only to authorized
persons.

(b) The precautions in part 3, section 13-800, and section 144
of Part 4 have been taken.

(b) Where such circuits are below supply conductors in the op-
eration of which they are used and are above other supply or com-
munication conductors at wire crossings, conflicts, or on the same
poles, provided the communication circuits are protected by fault-
less lightning arresters, drainage coils, or other suitable devices
to prevent the communication circuit voltage from normally
exceeding 400 volts.

Note: The grades of construction for communication conductors with
inverted levels apply.

4. Where Supply Line Construction Must Be Used. Communication
circuits used in the operation of supply lines shall comply with
all requirements for the supply lines with which they are used, where
they do not comply with the provisions of 3 (a) or (b) above.

Exception: Where the voltage of the supply conductors concerned
does not exceed 8,760, the communication conductors need only meet the re-
quirements for supply conductor of 5,000 to 8,700 volts.

Exception 2: Where the supply conductors are required to meet
grade 7, the size of the communication conductors may be the same as
for grade 4 (see Order 1242, 1, 2) for spans up to 160 feet.
B. Supply Circuits Used Exclusively in the Operation of Communication Circuits. Circuits used for supplying power solely to apparatus forming part of a communication system may be run either in open wire or in aerial or underground cable as follows:

1. Where run in open wire, such circuits shall have the grades of construction, clearances, insulation, etc. prescribed elsewhere in Part 2 for supply or communication circuits of the voltage concerned.

2. Where run in aerial or underground cable and the following requirements are met, the grades of construction, clearances, separations, locations, etc. prescribed elsewhere in Part 2 for communication cables shall apply.

   (a) Such cables are covered with effectively grounded continuous metal sheaths or are carried in metal cable rings on effectively grounded messengers.

   (b) All circuits in such cables are owned or operated by one party and are maintained only by qualified employees.

   (c) Supply circuits included in such cables are terminated at points accessible only to qualified employees.

   (d) Communication circuits brought out of such a cable, if they do not terminate in a repeater station or terminal office, shall be so protected or arranged that in the event of a failure within the cable, the voltage on these communication circuits will not exceed 400 volts.

   (e) Terminal apparatus for the power supply shall be arranged so that live parts are accessible when such supply circuits are energized.

Exception: The provisions of B.1 and 2 above, do not apply to supply circuits of 550 volts or less and which carry power not in excess of 5,200 watts, covered in rule 1239, §§ 3.

Order 1289. Overhead Electric Railway Construction.

A. Trolley Contact Conductor Supports. All overhead trolley-contact conductors shall be supported and arranged so that the breaking of a single contact conductor fastening will not allow the trolley-conductor, live span wire, or current-carrying connection to come within 10 feet (measured vertically) from the ground, or any platform accessible to the general public.

Span-wire insulation for trolley contact conductors shall comply with Order 1284.

B. High-voltage Contact Conductors. Every trolley contact conductor of more than 760 volts in urban districts where not on fenced right of way shall be suspended so as to minimize the liability of a break, and, as far as practicable, so that if broken at a single point, it cannot fall within 12 feet (measured vertically) from the ground or any platform accessible to the general public.

C. Third Rail. Third rails shall be protected where not on fenced rights of way by adequate guards composed of wood or other suitable material.

D. Prevention of Loss of Contact at Railroad Crossings. Trolley contact conductors shall be arranged as set forth in either 1 or 2 following, at grade crossings with interurban or other heavy-duty or high-speed railroad systems.

1. The trolley contact conductor shall be provided with live trolley guards of suitable construction, or.

2. The trolley contact conductor shall be as far as practicable at the same height above its own track throughout the crossing span and the next adjoining spans. Where a uniform height above rail is not adhered to, the change shall be made in a very gradual manner. Where the crossing span exceeds 100 feet, catenary construction shall be used.

Exception: This rule does not apply where the system is protected by interlocking devices or by gates.

E. Guards Under Bridges. 1. Where Guarding is Required. Guarding is required where the trolley contact conductor is so located that a trolley pole leaving the conductor can make simultaneous contact between it and the bridge structure.

2. Nature of Guarding. Guarding shall consist of substantial inverted trough of nonconducting material located above the contact conductor, or other suitable means of preventing contact between the trolley pole and the bridge structure.

SECTION 129. ORDERS FOR UNDERGROUND LINES

Order 1290. Location.

A. General Location. Underground systems of electrical conductors should be located so as to be subject to the least practicable disturbance. Railway tracks and underground structures, including catch basins, gas pipes, etc., should be avoided where practicable.

B. Ducts. The ducts between adjacent manholes or other outlets should be laid as straight and direct as practicable.

C. Manholes. Manhole openings, where practicable, shall be located so as to provide safe and convenient access. At crossings under railroads, the manholes, pull boxes, and terminals should, where practicable, be located away from the roadbed.

Order 1291. Construction of Duct and Cable Systems.

A. Material, Size, and Finish of Ducts. Ducts shall be of such material, size, mechanical strength, and finish as to facilitate the installation and maintenance of conductors or cables. Ducts shall be freed from burrs before laying and shall have clear bores.

B. Grading of Ducts. Where it is necessary to drain ducts, the grade of the ducts shall be such as to permit proper and adequate drainage.

C. Setting. Ducts should be suitably reinforced or be laid on suitable foundations of sufficient mechanical strength where necessary to protect them from settling.
D. Clearances. 1. General. The clearances between duct or cable systems and other underground structures, shall be as great as practicable. The distance between the top covering of the duct system and the pavement surface, or other surface under which the duct system is constructed, shall be sufficient to protect the duct system from injury by traffic.

2. Below Base of Rail. The top of all duct and cable system structures, except as hereafter specified, shall generally be located at a depth of not less than 30 inches, in the case of street railways, and not less than 42 inches, in the case of steam and electric railroads, below the base of rail. Where unusual conditions exist or where proposed construction would interfere with existing construction, a greater depth than specified above may be required.

Exception 1: Where this is impracticable, or for other reasons, this clearance may be reduced by agreement between the parties concerned. In no case, however, shall the top of the conduit protection extend higher than the bottom of the ballast section which is subject to working or cleaning.

Exception 2: Where physical and chemical conditions will permit, a conduit consisting of not more than two iron pipes, not exceeding 4 inches in diameter, or two creosoted wood ducts not exceeding 6 inches square, or one or more cables of a type designed for burying directly in the earth used for communication lines, or for service supply circuits not exceeding 220 volts, may be laid in the ground beneath railroad tracks without any form of protection at a minimum depth of 18 inches below the base of the rail unless the worked ballast section of the roadbed exceeds 18 inches, in which case the conduit shall be laid below the ballast section.

3. Iron Pipe Conduit. Where iron pipe is used as a conduit for underground cables or conductors, it shall not be laid in contact with water, gas, or steam metallic-pipe systems. Where the clearance is less than two inches, the metal conduit shall be adequately separated from other metallic-pipe systems by a barrier of suitable materials, or they shall be electrically bonded together at the point of least separation.

E. Separation Between Supply and Communication Duct Systems.

1. General. Duct systems, including laterals, to be occupied by communication conductors for public use should be separated, where practicable, from duct systems, including laterals, for supply conductors by not less than 3 inches of concrete, 4 inches of brick masonry, or 12 inches of well-tamped earth.

Exception 1: Extensions may, however, be made to existing interconnected or jointly owned and jointly used duct systems in common by municipalities, communication companies, or power companies with less effective separations than above specified.

Exception 2: Cables containing circuits of 600 volts or less between conductors and having a total transmitted power of not in excess of 3,269 watts, used exclusively in connection with the operation of a railroad signal or supply system, may be carried in the same duct system with communication cables, if such construction is agreed to by all parties concerned, and where the communication cables are exclusively used for the operation of the railroad signal or supply system, they may be carried in the same duct.

2. Entering Manholes. Where communication conductors and supply conductors occupy ducts terminating in the same manhole, the two classes of ducts should be separated as widely as practicable and where practicable should enter the manhole at opposite sides.

Explanation: This requirement is made so that cables can be racked along side walls with a minimum of crossings between the two classes of conductors.

F. Duct Entrances into Manholes. Iron pipe conduit terminating in manholes, handholes, or other permanent openings of underground systems, shall be provided with an effective shield, bushing or other smooth outlet.

Exception: This does not apply to communication conductors, to supply conductors of less than 220 volts between conductors, or to armored cables of any voltage.

G. Sealing Laterals. Lateral ducts for service connections to buildings, through which gas or water may enter buildings or other duct systems should be effectively plugged or cemented by the use of asphaltum, pitch, or other suitable means.

H. Duct Arrangement for Dissipation of Heat. Duct systems intended to carry supply cables of large current capacity should be arranged where practicable, so that ducts carrying such cables, will not dissipate their heat solely through other ducts.

Order 1292. Construction of Manholes.

A. Minimum Strength. The design and construction of manholes and handholes shall provide sufficient strength to sustain, with a suitable margin of safety, the loads which may reasonably be imposed on them.

B. Dimensions. Manholes should meet the following requirements where practicable:

1. Width. The least horizontal inside dimension should be not less than 3 feet, 6 inches.

2. Working Space. A clear working space should be provided. The horizontal dimension should be not less than 3 feet. The vertical dimension should be not less than 6 feet except in manholes where the opening is within 1 foot on each side of the full size of the manhole.

Exception: The dimensions specified in 1 and 2 above are not necessary in service boxes, handholes, or in manholes serving a small number of ducts, or in manholes used exclusively for communication-system equipment and cables.

C. Drainage. Where drainage is into sewers, suitable traps shall be provided to prevent entrance of sewer gas into manholes.

D. Ventilation. Adequate ventilation to open air shall be provided for manholes from which any openings exist into subways entered by the public. Where such manholes house transformers, sectionalizing
switches, or regulators, etc., the ventilator ducts shall be cleaned at necessary intervals.

E. Manhole Openings. Round openings to any manhole should be not less than 24 inches in diameter. Rectangular openings should have dimensions not less than 24 by 20 inches.

Exception: The dimensions specified above are not necessary in service boxes and handholes or in manholes serving a small number of ducts.

F. Manhole Covers. Manholes and handholes, while not being worked in, shall be securely closed by covers of sufficient strength to sustain such loads as reasonably may be imposed upon them.

G. Supports for Cables. Cables should be adequately supported at each manhole.

H. Manhole Location. Manhole openings shall, where practicable, be located so that barriers or other suitable guards can be placed to protect the opening effectively when uncovered.

Order 1293. Location of Cables.

A. Accessibility. Cables in manholes shall be reasonably accessible to workmen and clear working space shall be maintained at all times.

B. Cables Carrying Large Currents. Cables intended to carry large currents should be located, where practicable, in outside ducts so that they will not necessarily dissipate heat solely through adjacent ducts.

C. Separation Between Conductors. 1. Cables of Different Voltages. Cables shall be arranged and supported in ducts and manholes so that those operating at higher voltages will be separated as far as practicable from those operating at lower voltages.

2. Cables of Different Systems. Cables belonging to different systems, particularly supply-distribution and communication systems, shall not be installed in the same duct.

Exception: This does not apply to the installation of railway-signal supply and communication cables in the same duct, as permitted by exception 2 in Order 1291, E. 1.

3. Cables of Supply and Communication Systems. (a) General. Supply cables and communication cables for public use should, in general, be maintained in separate duct systems, and particularly in separate manholes.

Exception 1: Cable extensions may be made to existing interconnected or jointly owned and jointly occupied duct systems used in common by municipalities, communication companies, or supply companies.

Exception 2: This does not apply where railway-signal supply and communication cables are carried in the same duct system as permitted in exception 2, Order 1291, E. 1.

(b) In the Same Manhole. Supply cables and communication cables for public use occupying the same manhole should, where practicable, be maintained at opposite sides of the manhole.

Where supply and communication cables must cross, a separation of at least 1 foot shall be maintained where practicable.

Order 1294. Protection and Separation of Conductors Buried in Earth.

A. Separation. The separation between buried communication and buried supply conductors or cables shall consist of not less than 12 inches of well tamped earth, 4 inches of bricks, or 3 inches of concrete.

Exception: This separation and protection is not required where supply circuits having a potential of 550 volts or less and having a transmitted power of not in excess of 1200 watts are laid adjacent to communication cables, if all cables are used exclusively for the operation of a railway-signal or supply system, and are maintained by the same company.

B. Protection at Crossings of Cables. At all crossings where buried supply conductors or cables are above communication conductors or cables, the supply conductors or cables shall be protected from digging operations by concrete or creosoted wood plank or equivalent mechanical protective covering extending at least 2 feet in each direction from the point of crossing.

Exception: This separation and protection is not required where supply circuits having a potential of 550 volts or less and having a total transmitted power of not in excess of 3,200 watts are laid adjacent to communication cables, if all cables are used exclusively for the operation of a railway-signal or supply system, and are maintained by the same company.

C. Protection of Cables Installed Parallel. Where buried communication and buried supply conductors or cables are installed in the same trench generally parallel to each other, the buried supply conductors or cables shall be covered with concrete or creosoted wood plank or equivalent mechanical protection, except that this covering may be omitted in the following cases:

1. Where the voltage of the supply conductors does not exceed 300 volts.

2. Where the supply conductors or cables are encased in a continuous metallic sheath effectively grounded.

3. Where the supply conductors or cables are installed more than 2 feet horizontally from communication conductors.

Exception: This separation and protection is not required where supply circuits having a potential of 550 volts or less and having a total transmitted power of not in excess of 3,200 watts are laid adjacent to communication cables, if all cables are used exclusively for the operation of a railway-signal or supply system, and are maintained by the same company.

Order 1295. Protection of Conductors in Duct Systems and Manholes.

A. Protection Against Arcing. A suitable fire-resisting covering should be placed on the following cables to prevent injury from arcing:

1. Closely grouped lead-sheathed supply cables of more than 8,700 volts, or of large current capacity operating at more than 750 volts a.c. or 300 volts d.c.
2. Communication cables and supply cables of large current capacity, if occupying the same side of the manhole, or if they cross each other.

B. Bonding. Exposed metallic cable sheaths shall be bonded at suitable intervals with a conductor of suitable size, electrolysis conditions permitting. Supply cable sheaths need not be bonded to communication cable sheaths.

Order 1296. Guarding of Live Parts in Manholes.

A. Conductor Joints or Terminals. Joints or terminals of conductors or cables of supply systems shall be arranged so that there are no bare ungrounded current-carrying metal parts exposed to accidental contact within manholes or handholes.

B. Apparatus. 1. General. Live parts of protective, control, or other apparatus installed and maintained in manholes should be enclosed in suitable grounded cases or in cases having no exposed metallic parts.

Order 1297. Construction at Risers from Underground.

A. Separation Between Risers of Communication and Supply Systems. The placing of risers for communication systems and risers for supply systems on the same pole should be avoided where practicable. If it is necessary to use the same pole for the risers of both systems, they shall be placed on opposite semicircumferences of the pole where practicable. Where located on streets or highways, risers should, where practicable, be placed on poles so as to be in the safest available location from the point of view of traffic damage.

B. Mechanical Protection of Conductors. All supply conductors or cables from underground systems which connect to overhead systems shall be protected by a covering which gives suitable mechanical protection up to a point 8 feet above the ground.

Exception: Armored cables or cables installed in grounded metal conduit.

C. Grounding of Riser Pipes. Exposed metal riser pipes containing supply conductors shall be grounded unless such conductors are covered with a grounded metal sheath or are themselves grounded.

D. Conductor Terminal Construction. The terminals of underground cables operating at more than 750 volts and connecting to overhead open-wire systems shall meet the following requirements:

1. Protection Against Moisture. Protection shall be provided so that moisture will not enter the cable.

2. Insulation of Conductors. Conductors shall be properly insulated from the grounded metal sheath. In addition, the conductors of multiple conductor cable shall be properly separated and insulated from each other.

Note: These requirements may be fulfilled by the use of pothooks or other equivalent devices, such as oil switches, if incidentally they accomplish the same purpose.
PART 4
RULES TO BE OBSERVED IN THE OPERATION OF ELECTRIC AND COMMUNICATION EQUIPMENT AND LINES
(See Sections 102.37 and 196.72 of the Statutes)
SECTION 140. SCOPE AND APPLICATION
Order 1400. Scope.
A. Sections 141 to 145. The safety rules in sections 141, 142, and 143 do not apply to new construction not yet energized, but apply to the operation of, or to work on or about, the following:
1. Supply lines.
2. Communication lines used in connection with supply lines.
3. Electrical equipment of central stations, substations, and private plants.
4. Electrical tests.
5. Electrical work in tunnel, subway, or similar underground structures.
B. Sections 144 and 145. The safety rules in these sections apply to commercial telephone and telegraph, and other communication equipment and lines, with terminology adapted to the special needs of the employees concerned. Communication equipment and lines include fire and police alarm systems, district messenger systems, and other communication systems not operated in connection with supply lines.
Order 1401. Application.
While all the rules find application in the larger industrial or private plants and in moderate-sized utilities, some do not apply, or apply less fully, in the smaller ones. It has seemed unwise, however, to attempt to restrict the scope of these rules to rules which are applicable to all organizations or to all classes of electrical work.
Order 1402. Exposed Communication Lines.
Communication equipment and lines are not considered alive, except where made alive by leakage from supply equipment or lines. They are, however, a source of danger when live supply conductors on wood poles, due to their liability of being grounded.

SECTION 141. SUPPLY SYSTEMS—RULES FOR EMPLOYERS
Order 1410. General Requirements.
A. Interpretation and Enforcement of Rules. 1. Distribution. The employer shall furnish to each regular employee operating or working on electrical supply equipment, supply or communication lines, or hazardous electrical tests a copy of these safety rules for operation (or such of these rules as apply to his work), either separately or incorporated in more comprehensive rule books, and shall take means to secure the employee's compliance with the same.
Note: Many companies number their books of rules and require a receipt from each employee for his copy.
2. Interpretation. If a difference of opinion arises with regard to the meaning or application of these rules or as to the means necessary to carry them out, the decision of the employer or his authorized agent shall be final, unless an appeal is taken to the regulatory body having jurisdiction.
3. Modification. Cases may arise where the strict enforcement of some particular rule will seriously impede the progress of the work in hand; in such cases the employees in charge of the work to be done may, with the consent of the chief operator concerned, make such temporary modification of the rule as will expedite the work without materially increasing the hazard.
B. Organization Diagram. An organization diagram or written statement clearly showing the division of responsibility between officials and employees, down to and including the grade of foreman, should be supplied with the book of rules, or the diagram should be posted conspicuously in offices and stations of the employer and in other places where the number of employees and the nature of the work warrant.
C. First-aid Rules and Physicians' Addresses. The rule book should contain or be accompanied by the following:
1. A list of names and addresses of those physicians and members of the organization who are to be called upon in emergencies.
2. A copy of rules for first aid, prone-pressure method of resuscitation and fire extinguishment. These should also be kept in conspicuous locations in every station and testing room, in line wagons, and in other places where the number of employees and the nature of the work warrant.
D. Instructing Employees. Employees regularly working on or about equipment or lines shall be thoroughly instructed in methods of first aid, resuscitation by the prone-pressure method, and where advisable in fire extinguishment.
E. Qualifications of Employees. The employer shall use every reasonable means and precaution to assure himself that each employee is mentally and physically qualified to perform his work in accordance with these rules.
F. Chief Operator. 1. Authority. A properly qualified chief operator, system operator, load dispatcher, general superintendent, or otherwise designated employee shall be in charge of the operation of electrical equipment and lines and directly responsible for their safe operation. His duties shall be those prescribed in Order 1421, A.
2. Deputy. In large organizations the duties of the chief operator may be delegated for any particular section of the system to a
deputy chief operator (or otherwise designated employee) who shall report as required to the chief.

3. Large Organizations or Extended Systems. When it is impracticable to have the entire system placed in charge of one chief operator, the duties of the chief operator may be performed by a local superintendent, local manager, or other employee who may also perform other duties.

4. Small Organizations. The duties of the chief operator in small organizations may be performed for a portion of the system by a local superintendent, electrician, engineer, or some other employee who may also perform other duties.

Note: In these rules the various employees listed by above titles including the deputy chief operator, will be designated (for simplicity) by the title of chief operator, where referred to in this capacity.

G. Responsibility. If more than one person is engaged in work on or about the same electrical equipment or lines at any one location, one of the persons shall be designated as the foreman locally in charge of the work; or, all of the workmen shall be instructed as to the work they are to perform, and the employee instructing the workmen shall be considered in charge of the work.

Order 1411. Protective Methods.

A. Attendance. Unless a qualified employee is kept on duty where generators or rotary converters are operating such equipment shall be made inaccessible to unauthorized persons.

B. Requirement for Two Workmen. In wet weather or at night, no employee shall work alone on or dangerously near live conductors or parts of overhead or underground lines of more than 750 volts.

Exception: Trouble or emergency work is excepted.

C. Unqualified Workmen and Visitors. Unqualified employees or visitors shall be prohibited from approaching any live parts, unless accompanied by a qualified employee, who should warn the unqualified employee or visitor of the danger attendant upon such approach.

D. Diagrams for Chief Operator. Diagrams or equivalent devices, showing plainly the arrangement and location of the electrical equipment and lines, shall be maintained on file or in sight of the chief operator.

Note: These diagrams may be of the entire system, or of each specific portion of the system, or they may show typical arrangements.

E. Instructions to Employees. All employees shall be instructed as to the character of all equipment or lines on or dangerously near to which work must be done by them. Instructions shall describe the equipment and lines to be worked on, identifying them either by position, letter, color, number, or name.

F. Protective Devices. A supply of suitable protective, first-aid, and fire extinguishing devices and equipment, sufficient to enable employees to meet the requirements of these rules, shall be provided in conspicuous and suitable places in electrical stations, testing departments, and line construction and repair wagons. The following is a list of suitable devices and equipment, the kinds and numbers of which will depend on the requirements of each case:

1. First-aid outfits.
2. Insulating wearing apparel, such as insulating gloves, sleeves, and boots. Insulating shields, covers, mats, stools, and platforms. Insulating appliances, such as rods and tongs, for any necessary handling or testing of live equipment or lines.
3. Protective goggles of suitable materials and construction.
4. Tools of such special design and insulation as to eliminate so far as practicable the danger of forming short-circuits across conducting parts at different potentials or bringing the user into contact with such parts.
5. "Men at work" or equivalent tags, log books, operation diagrams, or equivalent devices, and portable danger signs.
6. Fire-extinguishing devices, for safe use on live parts or plainly marked that they must not be so used.
8. Fixed or portable lighting equipment.

G. Inspection of Protective Devices. Such devices and equipment shall be inspected or tested to insure that they are kept in good order, and in dependable condition and shall not be used unless so inspected, and in the case of insulating devices, tested as frequently as their use necessitates. Safety belts, whether furnished by employer or employee, should be inspected from time to time to assure that they are in safe working condition.

H. Warning Signs. Permanent warning signs forbidding entrance to unauthorized persons shall be displayed in conspicuous places at all unattended and unlocked entrances to electrical supply stations, substations, and testing rooms containing exposed current-carrying parts or moving parts.

I. Danger Signs. Suitable danger signs shall be placed in supply stations, substations, switching towers, and testing rooms about equipment having exposed current-carrying parts of more than 750 volts.

J. Identification. Circuits should be tagged, marked or lettered unless identification be obtained by location.

SECTION 142. SUPPLY SYSTEMS—GENERAL RULES FOR ALL EMPLOYEES

Order 1420. General Precautions.

A. Rules and Emergency Methods. The safety rules should be carefully read and studied. Employees may be called upon at any time to show their knowledge of the rules.

Employees should familiarize themselves with approved methods of first-aid, resuscitation, and fire extinguishment.
B. Heeding Warnings, Warning Others. Employees whose duties do not require them to approach or handle electrical equipment and lines should keep away from such equipment or lines. They should cultivate the habit of being cautious, heeding warning signs and signals, and always warning others when seen in danger near live equipment or lines. An employee should report as soon as practicable to his superior or some suitable authority any obvious hazards to life or property observed in connection with any electric equipment or lines.

Any imminently dangerous conditions shall be guarded until they can be made safe.

C. Inexperienced or Unfit Employees. 1. No employee shall do work for which he is not properly qualified or about live equipment or lines.

2. If an employee is in doubt as to the proper performance of any work assigned to him, he should request instructions from the foreman or other responsible person.

Exception: Work done under the direct supervision of an experienced and properly qualified person is excepted.

D. Supervision of Workmen. Workmen, whose employment incidentally brings them in the vicinity of electrical supply equipment or lines with the dangers of which they are not familiar, shall proceed with their work only when authorized. They shall then be accompanied by a properly qualified and authorized person, whose instructions shall be strictly obeyed.

E. Exercising Care. Employees near live equipment and lines should consider the effect of each act and do nothing which may endanger themselves or others. Employees should be careful always to place themselves in a safe and secure position and to avoid slipping, stumbling, or moving backward against live parts. The care exercised by others should not be relied upon for protection.

F. Live and Arcing Parts. 1. Treat Everything as Alive. Electrical equipment and lines should always be considered as alive, unless they are positively known to be dead. Before starting to work, preliminary inspection or test should always be made to determine what conditions exist. (See Order 1422, A, for general requirements and Order 1424, C, for test of circuit).

2. Protection Against Arcs. The hands should be covered by protecting and insulating gloves and the eyes by suitable goggles or other means if exposed to injurious arcing. Either a thin rubber glove used with a protective outer glove or a heavier rubber glove used alone shall be considered as both protecting and insulating.

Employees should keep all parts of their bodies as far away as possible from brushers, commutators, switches, circuit-breakers, or other parts at which arcing is liable to occur during operation or handling.

G. Safety Appliances. Employees at work on or near live parts should use the protective devices and the special tools provided. Before starting work these devices or tools should be examined to make sure that they are suitable and in good condition.

Note: Protective devices may get out of order or be unsuited to the work in hand.

H. Suitable Clothing. Employees should wear suitable clothing while working on or about live equipment and lines. In particular, they should keep sleeves down and avoid wearing unnecessary metal or flammable articles, such as rings, watch or key chains, or metal cap visors, celluloid collars, or celluloid cap visors. Loose clothing and shoes that slip easily should not be worn near moving parts.

I. Safe Supports. Employees should not support themselves on any portion of a tree, pole structure, scaffold, ladder, or other elevated structure without first making sure that the support is strong enough. Supports should be reinforced if necessary.

Where portable ladders are treated for preservation, only a transparent coating or other preservative which does not hide the grain and wood structure shall be used. Only a non-conducting preservative and non-conducting bracing shall be used where ladders are used in stations or around electric equipment. (See Order 3524 of Industrial Commission's General Orders on Safety in Construction)

Portable ladders should be in a safe position before being climbed. The slipping of a ladder at either end should be carefully guarded against, especially where the supporting surfaces are smooth or vibrating.

J. Safety Belts. Employees working in elevated positions should use a suitable safety belt or other adequate means to guard against falling. Before an employee trusts his weight to the belt, he should determine that the snaps or fastenings are properly engaged and that he is secure in his belt. No safety belt or other protective device shall be used that has not been approved and recently inspected or tested as provided in Order 1411, G.

K. Fire Extinguishers. In fighting fires near exposed live parts, employees should avoid using fire-extinguishing liquids which are non-insulating. If necessary to use them, all neighboring equipment should be first killed.

L. Repeating Messages. Each person receiving an unwritten message concerning the handling of lines and equipment shall immediately repeat it back to the sender and secure his full name or other identification and acknowledgment. Each person sending an unwritten message shall require it to be repeated back to him by the receiver and secure the latter's full name.

Order 1421. Operating Routines.

A. Duties of Chief Operator. The chief operator, described in Order 1419, F, shall:

1. Keep informed of all conditions affecting the safe and reliable operation of the system.
2. Keep a suitable record or log book showing all changes in such conditions. He shall read and sign such record when assuming duty and sign again on being relieved.

3. Keep within sight operating diagrams or equivalent devices indicating whether electrical supply circuits are open or closed at stations under his immediate jurisdiction, and where work is being done under his special authorization.

Exception: These indicating devices shall not be required for any chief operator as assigned under paragraphs 3 and 4 of Order 1410, F, if the record or log sheets show all conditions affecting the safe and reliable operation of the system.

Note: In these rules the person performing these duties is designated as chief operator, regardless of his ordinary title.

B. Duties of Foreman. Each foreman in charge of work shall adopt such precautions as are within his power to prevent accidents and to see that the safety rules are observed by the employees under his direction. He shall make all the necessary records, and shall report to his chief operator when required. He shall, as far as possible, prevent unauthorized persons from approaching places where work is being done. He shall also prohibit the use of any tools or devices unsuited to the work in hand or which have not been tested as provided in Order 1411, G.

C. Qualified Guides. The qualified persons accompanying un instructed workmen or visitors near electrical equipment or lines shall take precautions to provide suitable safeguards and see that the safety rules are observed.

D. Special Authorization. Special authorization from the chief operator shall be secured before work is begun on or about station equipment, transmission, or interconnected feeder circuits or live circuits of more than 7,500 volts, and in all cases where lines are to be killed by regular procedure at stations, and a report shall be made to him when such work ceases.

Exceptions: In emergency, to protect life or property, or when communication with the chief operator is difficult, due to storms or other causes, any qualified employee or any employee or lines covered by this order without special authorization if the trouble is such as he can promptly clear with help available in compliance with the remaining orders. The chief operator shall then after be notified as soon as possible of the action taken. (See Order 1411, F, 2 for crossed or fallen wires)

2. Operations at Stations. In the absence of specific operating schedules for opening and closing supply circuits at stations, or starting and stopping equipment, employees shall secure special authorization from the chief operator before performing these operations. In all cases such special authorization shall be secured where circuit or equipment control devices are tagged at stations to protect workmen. (See Order 1421, F, for tagging electrical circuits)

Exceptions: In emergency, to protect life or property, any qualified employee may open circuits and stop moving equipment without special authorization if, in his judgment, his action will promote safety, but the chief operator shall be notified as soon as possible of such action, with reasons therefor. To maintain service, any qualified employee may also reclose circuits which have been opened by fuses or automatic circuit-breakers except where this is prohibited by rule.

3. Cutting out Sections of Circuits. Special authorization shall be secured from the chief operator before sections of overhead or underground circuits are cut off by employees at points other than at stations by means of sectionalizing switches.

Exception: Portions of distribution circuits of less than 7,500 volts may be cut off by authorized employees without special authorization from the chief operator, by means of sectionalizing switches, if the chief operator is thereafter notified as soon as possible of the action taken. This may also be done even for circuits of more than 7,500 volts when communication with the chief operator is difficult.

E. Restoring Service After Work. Instructions for making alive equipment or lines which have been killed by permission of the chief operator to protect workmen shall not be issued by him until all workmen concerned have been reported clear. When there is more than one workman at a location, a person authorized for the purpose shall report clear for such workmen, but only after all have reported clear to him. If there is more than one gang, each shall be so reported clear to the chief operator.

F. Tagging Electrical Supply Circuits. 1. When Tags are Placed at Direction of Chief Operator. Before work is done at direction of chief operator on or about equipment or circuits, under any of the conditions listed below, the chief operator shall have "Men at work" or equivalent tags attached at all points, where such equipment or circuits can be manually controlled by regular operators. The tags should be placed to plainly identify the equipment or circuits worked on.

(a) Transmission or interconnected feeder circuits.
(b) Circuits operating at more than 7,500 volts.
(c) Circuits killed at stations and substations to protect workmen.

2. When Tags Are Placed at Direction of Authorized Employees. Before work is done on or about any equipment or lines which are killed by authorized employees at points other than at stations, the employees shall have "Men at work" or equivalent tags placed at all points where the circuit has been disconnected to identify the portion worked on.

G. Maintaining Service. 1. Closing Tagged Circuits which have Opened Automatically. When live circuits on which "Men at work" or equivalent tags have been placed have opened automatically, they should be kept disconnected until the chief operator has given proper authorization for reconnection.

2. Closing Circuits Operated Automatically. When overhead circuits, other than trolley and third-rail circuits, open automatically, the employer's local operating rules shall determine in what manner and how many times they may be closed with safety for persons on
or near those circuits. The chief operator shall be advised of the conditions.

3. Grounded Circuits. When circuits feeding supply lines become accidentally grounded, they shall be tested to determine where the ground exists. If the ground cannot be definitely located and removed by the station operator, an immediate report of the finding shall be given to the chief operator, who shall order a patrol of the lines affected to definitely locate and remove the ground as soon as practicable.

Note: On circuits exceeding 7,600 volts, it will usually be found advisable to disconnect the circuit or effectively ground the accidentally grounded conductor until the lines have been cleared of the accidental ground.

H. Protecting Traffic. 1. Barrier Guards. Employees shall first erect suitable barrier guards before engaging in such work as may endanger traffic. They shall also display danger signs or red lamps placed so as to be conspicuous to approaching traffic. Where the nature of work and traffic requires it, a man shall be stationed to warn passers-by while work is going on.

2. Crossed or Fallen Wires. An employee finding any crossed or fallen wires which may create a hazard shall remain on guard or adopt other adequate means to prevent accidents, and shall have the chief operator notified. If the employee can observe the rules for handling live parts by the use of insulating appliances, he may correct the condition at once; otherwise he shall first secure the authorization from the chief operator for so doing. (See Order 1421, D, for special authorization)

1. Protecting Workmen by Switches and Disconnectors. When equipment or lines are to be disconnected from any source of electrical energy, for the protection of workmen, the operator shall first open the switches or circuit-breakers designed for operation under load, and then the air-break disconnectors, when provided.

Order 1422. Handling Live Equipment or Lines.

A. General Requirements. 1. Touching Live Parts. An employee shall never touch with bare hands any parts at different potential at the same time. He should never touch with bare hands even a single exposed ungrounded live part at a dangerous potential to ground unless he is insulated from other conducting surfaces, including the ground itself, and stands on insulating surfaces.

2. Wire Insulation. Employees should not place dependence for their safety on the insulating covering of wires.

All precautions in this section for handling live parts shall be observed in handling insulated wires.

Note: Covering or insulation on a wire may look perfect, but it frequently will not prevent shock.

3. Exposure to Higher Voltages. Every employee working on or about equipment or lines exposed in overhead construction to voltages higher than those guarded against by the safety appliances provided should as far as practicable assure himself that the equipment or lines worked on are free from dangerous leakage or induction or have been effectively grounded.

4. Cutting into Insulating Coverings of Live Conductors. When the insulating covering on live wires or cable must be cut into, the employee should use a suitable tool.

Recommendation: While doing such work, it is recommended that suitable goggles be worn to protect the eyes, and insulating gloves to protect the hands.

When metal sheathing must be removed from cables, it should be done with special tools which will not injure the insulation. The sheathing should be cut so as to leave enough exposed insulation after the conductor has been bared to avoid arcing over between the conductor and the sheath. If the cable consists of more than one conductor, similar exposed insulating surface should be left for each conductor, using insulating separators between conductors, if necessary.

Insulating devices, such as wood separators, etc., should be examined, and conducting dust or chips, sharp edges, or nails should be eliminated to avoid defeating the purpose for which the devices are intended.

5. Metal Tapes or Ropes. Metal measuring tapes, and tapes, ropes, or hand lines having metal threads woven into the fabric should not be used near exposed live parts.

6. Metal Reinforced Ladders. Ladders reinforced by metal in a longitudinal direction should not be used near exposed live parts.

B. Voltages Between 750 and 7,500. No employee should go, or take any conducting object without a suitable insulating handle, within 6 inches of any exposed live part whose voltage exceeds 750, where it is practicable to avoid this. Where safe distance from live parts cannot be secured by use of the special insulating tools and appliances furnished, properly tested insulating gloves and siveler may serve as the sole portable insulating devices between the person and live parts.

Exception 1: In all dry locations this distance may be less than 6 inches, if insulating devices, such as shields, covers, or gloves are placed between the person and the part or object.

Exception 2: In dry locations, the distance may also be reduced if insulating barriers (such as mats, stools, or platforms) are placed between the person and all other conducting or grounded surfaces, which he could accidentally touch at the same time.

Note: Care should be exercised in using insulating gloves to avoid puncturing them on sharp edges, especially in making wire splices. It is generally advisable to wear protecting gloves over insulating gloves.

Under some circumstances it is desirable to cover with protective insulating material any grounded conductor or other grounded metal adjacent to work on live conductors, where the human might inadvertently contact it while handling a live conductor.
C. Voltages Exceeding 7,500. 1. Clearances from Live Parts. No employee should go, or take any conducting object, within the distances named below from any exposed live part at or above the voltage specified.

<table>
<thead>
<tr>
<th>Operating Voltage</th>
<th>Distance in Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,500</td>
<td>12</td>
</tr>
<tr>
<td>13,800</td>
<td>22</td>
</tr>
<tr>
<td>15,000</td>
<td>24</td>
</tr>
<tr>
<td>34,500</td>
<td>34</td>
</tr>
<tr>
<td>44,000</td>
<td>37</td>
</tr>
<tr>
<td>60,000</td>
<td>38</td>
</tr>
<tr>
<td>72,000</td>
<td>48</td>
</tr>
<tr>
<td>110,000</td>
<td>55</td>
</tr>
<tr>
<td>132,000</td>
<td>69</td>
</tr>
</tbody>
</table>

Distances for intermediate voltages to be determined by interpolation.

Exception: In dry locations these distances may be reduced if suitable insulating guards or barriers are placed between the person and such part or object.

2. Guards. If the part is being directly worked on, the tools or other mechanical appliances used shall have insulating handles of sufficient length to permit the operator to maintain the distance specified in Order 1422, C, 1 preceding.

Exception: This does not apply if protective guards are also used between the person and the live part.

Note: These protective guards may be permanent insulating covers or shields, or may be disks of insulating material, suitable for the voltages to be handled and for the attendant conditions, attached to the handles of rods or tools.

D. Requirement for Two Workmen. In wet weather or at night no employee shall work alone on or dangerously near live lines of more than 750 volts.

Exception: Trouble and emergency work is excepted.

E. When to Kill Parts. An employee shall not approach, or willingly permit others to approach, any exposed ungrounded part normally alive closer than permitted by Order 1422, A, B, or C, unless the supply equipment or lines are killed.

Note: This is to ensure the employee of his own safety and the safety of those working under his direction.

F. Opening and Closing Switches. Manual switches and disconnectors should always be closed by a single unhesitating motion, and, if possible, with one hand. Care should be exercised in opening switches to avoid causing serious arcing.

G. Work from Below. Employees should avoid working on equipment or lines from any position by reason of which a shock or slip will tend to bring the body toward exposed live parts. Work should, therefore, generally be done from below, rather than from above.

H. Attaching Connecting Wires and Grounds. 1. Handling Connecting Lines. In connecting dead equipment or lines to a live circuit by means of a connecting wire or device, employees should first attach the wire to the dead part before attaching it to the circuit. When disconnecting, the live end should be removed first. Loose conductors shall be kept away from exposed live parts.

2. Applying Grounds. In applying a grounding device to normally live parts, the device shall be grounded before being brought near the parts and shall be removed from the live parts before being removed from the ground connection.

I. Handling Series Circuits. Secondaries of current transformers to meters or other devices should not be opened when alive until a jumper has been connected across the point of opening or the circuit has been short-circuited elsewhere.

Before working on arc lights connected to series circuits, they shall be short-circuited or (when necessary to avoid hazard) disconnected entirely from such circuits by absolute cutouts.

J. Stringing Wires. In stringing wires near live conductors, they should be treated as alive unless they are effectively grounded.

Order 1423. Killing Equipment or Lines.

A. Application of Rule. If workmen must depend on others for operating switches to kill circuits on which they are to work, or must secure special authorization from the chief operator before themselves operating such switches, the following precautions or measures shall be taken in the order given, before work is begun or about the equipment or lines concerned, as a means for preventing misunderstanding and accident.

In small organizations the chief operator may himself operate the switches and disconnectors instead of instructing others to do so, thus much simplifying and abbreviating the procedure. In certain cases the chief operator may direct the workman who wishes the section killed for his own protection to operate some or all switches necessary himself, thus also abbreviating the procedure.

In cases where there is no station with regular attendants at either end of a section of line to be killed for the protection of workers, the rules below need not apply for disconnection of that end of the section concerned, provided that the employee under whose direction that end of the section is disconnected is in sole charge of the section and of the means of disconnection employed or that the point of disconnection at that end of the section is suitably tagged before work proceeds.

B. Workman's Request. The workman in charge of the work shall apply to the chief operator to have the particular section of equipment or lines killed, identifying it by position, letter, color, number, or other means.

C. Opening Disconnectors and Tagging. The chief operator at his discretion shall direct the proper persons to open all switches and
air-break disconnectors through which electrical energy may be supplied to the particular section of equipment and lines to be killed, and shall direct that such switches and disconnectors be tagged with a tag of a distinctive character indicating that men are at work. All oil switches and remotely controlled switches should also be blocked where necessary for avoiding mistakes.

A record shall be made when placing the tag giving the time of disconnection, the name of the man making the disconnection and the name of the workman who requested the disconnection, and the name of the chief operator.

Where the section of equipment or lines can be made alive from two or more sources, all such sources shall be disconnected.

Note: This will apply to work on lines with more than one station, also to work on transformers in banks, rotary converters, motor generators, switches, and other similar equipment.

D. Station Protective Grounds. When all the switches and disconnectors designated have been opened, blocked, and tagged in accordance with Order 1423, C, the chief operator shall require that protective grounds be made upon the lines which have been killed and that they are reported to him when placed.

Exception: This requirement does not apply under conditions where the making of such grounds or the conditions resulting from having made the grounds would be more hazardous than working on lines without grounding.

E. Permission to Work. Upon receipt of information from all persons operating switches and disconnectors that protective grounds are in place, the chief operator shall advise the workman who requested the killing of the section that the specified section of equipment or line has been killed and that he may proceed to work.

F. Workman’s Protective Grounds for Overhead Lines. The workman in charge should immediately proceed to make his own protective grounds on the disconnected lines, except under conditions where the making of such grounds or the conditions resulting therefrom would be more hazardous than working on the lines without grounding. Such grounds shall be made between the particular point at which work is to be done and every source of energy.

G. Proceeding with Work. After the equipment or lines have been killed (and grounded, if required by F above), the workman in charge and those under his direction may proceed with work on the grounded or killed parts. Care, however, shall be taken to guard against adjacent live circuits or parts.

H. Procedure for Other Gangs. Each additional workman in charge desiring the same equipment or lines to be killed for the protection of himself or the men under his direction shall follow the same procedure as the first workman and secure similar protection.

I. Reporting Clear—Transferring Responsibility. The workman in charge, upon completion of his work, and after assuring himself that all men under his direction are in safe positions, shall remove his protective grounds and shall report to the chief operator that all tags protecting him may be removed, and shall give his location and report as follows: “Mr. ___________ and men clear and all grounds removed.”

The workman in charge who received the permission to work may transfer this permission and the responsibility for men under him, as follows:

He shall personally inform the chief operator of the proposed transfer, and if this is permitted, the name of the successor shall be entered at that time on the tags concerned or in the records of the persons placing the tags and of the chief operator. Thereafter the successor shall report clear and shall be responsible for the safety of the original workmen, so far as this is affected by the removal of tags.

J. Removal of Tags. The chief operator shall then direct the removal of tags for that workman and the removal shall be reported back to him immediately by the persons removing them. Upon the removal of any tag, there shall be added to the record the name of the chief operator and workman who requested the tag, the time of removal, and the signature of the person removing the tag.

K. Restoring Service. Only after all protecting tags have been removed by the above procedure from all points of disconnection shall the chief operator, at his discretion, direct the removal of protective grounds and blocks and the closing of any or all disconnectors and switches.


A. Application of Rule. When making temporary protective grounds on a normally live circuit, the following precautionary measures shall be observed in the order given, and the ground shall be made to all wires of the circuit which are to be considered as grounded.

B. Ground Connections. The employee making a protective ground on equipment or lines shall first connect one end of grounding device to an effective ground connection supplied for the purpose.

C. Test of Circuit. The normally live parts which are to be grounded should next be tested for any indication of voltage, the employee carefully keeping all portions of his body at the distance required from such parts when alive by the use of suitable insulating rods or handles of proper length, or other suitable devices.

D. Completing Grounds. If the test shows no voltage, or the local operating rules so direct, the free end of the grounding device shall next be brought into contact with the normally live part and securely clamped or otherwise secured thereto before the employee comes within the distances from the normally live parts specified in Orders 1422, B and C, or proceeds to work upon the parts as upon a grounded part.

In Stations, remote-control switches can sometimes be employed to connect the equipment or lines being grounded to the actual ground
SECTION 143. SUPPLY SYSTEMS—RULES FOR EMPLOYEES DOING SPECIALIZED WORK

Order 1430. Supply Stations and Switchboards.

A. Application of Rule. Engineers, machine attendants, switchboard operators, and helpers shall study and strictly observe the following, in addition to all the general Orders 1420 to 1424 which apply to their work.

B. Care about Machines. Do not allow oil cans, tools, dusters, or wiping cloths to catch in moving parts of machinery. In passing any switchboard or machine in operation, do not touch it unnecessarily nor allow metal tools or other metal objects to touch the apparatus or connections. Do not use iron or tin oil cans near field magnets, and use only dusters and wipers with insulating handles or about exposed live parts. Employers about to work on normally moving parts of remotely controlled equipment during periods of rest, shall be protected against their accidental starting by "Men at work" or equivalent signs first being placed on the starting devices, and by locking or blocking these where practicable. All employees shall, before starting any work, satisfy themselves that all these protective devices have first been installed. (See Order 1423)

Do not use a metal bar to turn over the motor of any energized machine. Do not use a metal rule or tape or metal-reinforced fabric tape near live circuits. Do not use air hose with metallic covering or fittings around live electric apparatus or conductors. Do not use flashlight with metal case near live parts.

C. Care About Live or Moving Parts. Do not work on or near exposed live or moving parts unless authorized to do such work, and then strictly observe the rules applying. When working near fuses and circuit breakers or other apparatus which may arc suddenly, be careful to avoid injury from their operation.

When working on one section of a switchboard or in one compartment, mark it conspicuously and place barriers to prevent your accidental contact with live parts in that section or adjacent sections. When working on or near live parts and standing on insulated stools or ladders, or when otherwise insulated from the ground, avoid handling metal tools or other objects to other persons who are not insulated.

Do not stand on, sit on, or pass through belts, whether the belt is at rest or in motion.

D. Handling Fuses or Brushes. In handling fuses of more than 750 volts, use the special rods or tongs and stand on insulated platforms or mats, where provided. Keep the body as distant and as far below as possible.

Replace or remove link fuses from live terminals and handle brushes on live equipment only when absolutely necessary, and then with due precautions.

E. Battery Rooms. Smoking, or the use of open flames, or of tools which may generate sparks, should be avoided except when cells are not actively gassing and when prior ventilation has been ample. Sparks from frictional or static electricity should be avoided, as they may ignite the gas if discharged close to its source, as at the vent of a sealed-type cell during overcharging. The electrolyte of storage batteries, and spray containing electrolyte, are somewhat corrosive, particularly when concentrated by evaporation, and contact with body or clothes should be avoided.

Do not handle live parts of batteries or their connections unless standing on insulating platforms or wearing suitable insulating boots.

F. Working in Elevated Positions. When working in an elevated position, especially above live or moving parts, assure yourself of the security of your position and support, and take precautions to avoid dropping tools or materials.

G. Handling Switchboard Equipment. All ungrounded metal parts of devices on switchboards shall be handled as if operating at the highest voltage to which any portion of the equipment on the same switchboard panel is subject, unless the parts are known, by test or otherwise, to be free from such voltage.

When cable plug connectors are used, do not allow one end to remain hanging loose while the other end is connected to a live terminal.

In handling instrument circuits never open the secondary of a current transformer while it is alive.

H. Reporting Circuit Trouble to Chief Operator. Report to your immediate superior or to the chief operator any unusual conditions of load and the indication of any accidental ground on an outgoing circuit.

I. Reporting Defects. Promptly report to your superior any dangerous conditions of equipment or surroundings, including defective tools, switches, or protective devices, or live cases or frames of apparatus or instruments.

Order 1431. Meters.

A. Application of Rule. All meter setters and testers shall study and strictly observe the following in addition to all the general orders in 1420 to 1424 which apply to their work.

B. Taped Joints. Never leave joints or loose ends of wires untaped unless otherwise protected.
C. Care About Live Parts. Do not use bare fingers or hands to determine whether a circuit is alive. Never remove or replace fuses in live circuits of more than 750 volts except by means of the suitable appliances provided.

D. Opening Circuits at Switches. Special care should be exercised in opening circuits at meter connections unless the circuits have been first properly opened at switches.

E. Current-transformer Secondaries. Before working on an instrument or other device in a current-transformer secondary circuit, always bridge the device with jumpers, so that the circuit cannot be opened at the device. Never open such a circuit at meter connections until it has been bridged elsewhere.

F. Special Tools. Use only hand tools suited to the work being done and so reduce the danger of short-circuits.

G. Reporting Defects. Promptly report to your immediate superior any live meter case or any condition of a meter or its connections, or of the interior wiring or of overhead lines, or of your own or other utilities, which might endanger life and property.

Order 1432. Testing.
A. Application of Rule. All electrical testers, helpers, and others working about electrical tests shall study and strictly observe the following, in addition to all the general orders in 1420 to 1424. Owing to the diversified character of testing work this study should usually extend also to the special rules in 1438 to 1439.

B. Authorization of Work. Do not work on or about equipment or lines without first receiving authorization from the person in charge.

Note: If such equipment or lines are under control of a chief operator, this authorization must come from him. This will include the attaching of tags at the proper points and the observation of all rules for general operation in 1421.

C. Checking of Conditions. Thoroughly familiarize yourself with all conditions surrounding equipment or lines to be tested before making any change in these conditions.

Do not make any change in equipment or lines unless you fully understand the effect of the change.

Be very careful of capacity effects of transformers and other high-voltage apparatus, the discharge from which may be very dangerous if passed through the body. Ground the coils before touching them.

D. Foreman. One properly qualified person shall be in immediate charge of all testing work, or all of the workmen shall be instructed as to the work they are to perform and the employee instructing them shall be considered in charge of the work.

E. Warnings and Barriers. Display danger signs and erect suitable guards about all equipment or lines under test when in places where traffic is frequent, if live or moving parts would otherwise be exposed.

When temporary wiring, belts, pulleys, or other temporary live or moving parts must be guarded, suitable portable or temporary guards and warning signs shall be used.

F. Requirement for Two Workmen. No person should work alone in testing or experimental work on or about parts on which the voltage may exceed 750 volts, except in routine testing where the live parts are properly guarded.

G. Reporting Defects. Promptly report to your immediate superior any condition of equipment or lines under test which may endanger life or property.

Order 1433. Overhead Lines.
A. Application of Rule. Linemen and assistants and groundmen, in construction, extension, removal, or repair work, shall study and strictly observe the following, as well as all the general orders in 1420 to 1424 which apply to their work.

B. Testing Structures before Climbing. Before climbing poles, ladders, scaffolds, or other elevated structures, first assure yourself that the pole, ladder, scaffold, tree, crossarm, messenger wire, cable car, or boatswain's chair, or other elevated support, is strong enough to safely sustain your weight.

Note: Poles may be tested for decay near the ground line with a bar, screwdriver, or other tool, and sounded for decay at the center by rapping with a heavy tool or block of wood.

If poles or crossarms are apparently unsafe because of decay or unbalanced tensions of wires on them, they should be properly braced or guyed before they are climbed.

C. Use of Pole Steps. If poles are stepped, make use of such steps in climbing.

D. Unsafe Supports. Do not support yourself by pins, brackets, or conductors.

E. Spurs. Spurs with gaffs worn short shall not be used. The gaffs on spurs shall be kept sharp, and spurs shall fit properly. Spurs shall not be worn on work for which they are not required, nor while men are traveling to or from work.

F. Care About Live Parts. 1. Do not go among any wires until you know their voltage.

2. Leaning over and crowding through unprotected wires should be avoided wherever possible.

3. Place yourself so that you will not be liable to fall on wires should an accident occur.

4. Do not depend on the insulating covering of wires, and treat all lines as alive unless they have been properly killed (except communication lines known to be clear).

5. Avoid use of hand lines or measuring tapes containing metal strands.

6. In handling dangerous switches or fuses, do so only by means of suitable insulating handles, rods, or tongues.
G. When Touching Live Parts. When working on live equipment or wires never allow any portion of the body to come in contact with any live or grounded part other than that worked on.

While touching supply wires or equipment, avoid as far as possible touching ground wires, guy wires, span wires, metal pipes, metal poles, metal sheaths, communication wires or equipment, transformer cases, hangers, and other metal fixtures.

Note: Communication wires are included principally because of their possibility of being grounded. The other equipment and wires listed may become either live or grounded.

While touching communication wires or equipment, metal sheaths, metal pipes, ground wires, or metal fixtures on poles, avoid as far as possible touching supply wires or equipment, guy or span wires.

H. Protecting Traffic. When working overhead, keep tools and materials not in use in proper receptacles; tools or materials should not be thrown to or from the man on the pole, but should be raised or lowered by means of a hand line, using proper receptacles where practicable. Pole holes and obstructions along public highways and other frequented places shall be protected by watchmen or by suitable guards or danger signals so located as to be conspicuous to traffic.

When working overhead, or hoisting or lowering materials above places where frequent traffic occurs, a man should be stationed to warn passers-by.

Note: Where traffic is light, warning signs or barriers may be used in lieu of watchmen. Where traffic is congested, it may be necessary to rope off the space.

I. Avoid Falling Objects. Do not unnecessarily stand where you can be struck by materials dropped by men working overhead.

J. Stringing Lines. Never string wire near live lines except by means of suitable insulating hand lines or other appliances. Avoid bringing them in contact with the live wires. Regard them as live wires of the same voltage because of their liability to come in contact with the live wires.

Never change the strains on a pole by adding or removing wires until assured that the pole will stand the altered strains.

In stringing wires do not allow them to sag so as to endanger vehicles or pedestrians below, unless traffic is intercepted by watchmen or otherwise.

K. Reporting Defects. Report promptly to your immediate superior any abnormal sagging wires, broken insulators, leaning poles, defective pole steps, broken globes or lamp supports, and other defects giving rise to a dangerous condition of your own or other utilities, or any indication of voltage on lines supposed to be dead.

Order 1435. Communication Circuits Used in Connection With Supply Lines.

A. Application of Rule. All men working on or near telephone and telegraph circuits operated in connection with supply lines shall study and strictly observe the following in addition to the general rules in 1420 and 1424 and the special rules under the sections for overhead and underground operation, respectively, in 1435 and 1436 which apply to their work.

B. Precautions on Series Circuits. Series lamps and devices in series circuits should always be treated as alive unless disconnected by absolute cut outs or protected by the grounding of the circuit.

C. Handling Series Lamps. Trimmers, inspectors, or patrolmen shall wear suitable insulating gloves and stand on insulating stools, platforms, or tower wagons, or on dry, well seasoned wood poles while touching series lamps or their cut outs, when these are alive.

Where insulating stools, platforms or tower wagons are used which provide sufficient insulation from ground for the voltages to be handled, the insulating gloves may be dispensed with.

D. Bridging Series Lamps. Before working on lamps or other devices in live series circuits always bridge the device with jumpers such as series lamp cut outs usually provide.

Note: This will insure that the circuit will not be opened at the device, and possibly be completed through your body when you are at the point of opening and burn you.

E. Testing Series Lamp Circuits. Series lamp circuits should not be tested at their full operating voltage unless it is impracticable to test otherwise. Tests should be made only in accordance with a time schedule, concerning which all persons whose safety may be affected are informed.

F. Periodically Disconnected Circuits. If circuits, such as series lamp circuits, are not effectively grounded during the idle period, all rules for handling live parts shall be strictly observed.

G. Reporting Defects. Report promptly to your immediate superior any abnormal sagging wires, broken insulators, leaning poles, defective pole steps, broken globes or lamp supports, and other defects giving rise to a dangerous condition of your own or other utilities, or any indication of voltage on lines supposed to be dead.

Order 1434. Series Street Lamps.

A. Application of Rule. All men working on or near telephone and telegraph circuits operated in connection with supply lines shall study and strictly observe the following in addition to all the general rules in Section 142 and the special Orders 1435 and 1436 which apply to their work. For rules governing the operation of commercial communication lines see Sections 144 and 145.

B. Title of Official in Charge. In those rules where the words "chief operator" are used the official in charge of safeguarding operation is to be understood.

C. Precautions Before Climbing Poles. Make a careful inspection to ascertain if possible whether there are any crosswires with supply circuits before climbing poles or other structures to work on or about communication wires, especially where such poles or structures are occupied in common with, or located near power circuits.

Apply mechanical tests as far as practicable to messenger wires before trusting the wires to carry your weight.
D. Approaching Supply Wires. Avoid contact with all wires other than those you know to be communication wires, assuming such other wires always to be alive.

Do not approach any supply wire or supply equipment within the distances given in Orders 1422, B and C, unless you can comply with all the rules under that section, as far as they apply.

Note: Communication wires in trouble may be in contact with supply wires at some distant point, and should be treated with proper care.

E. Touching Equipment. While handling communication wires, metal sheaths, or communication equipment avoid touching guy or span wires and supply wires or equipment. Especially avoid standing on or touching transformer cases, hangers, or connections.

While touching open communication wires avoid contact also with grounded parts, such as sheaths and ground wires.

F. Stringing Wires. When stringing wires or cables over or under supply lines avoid any possibility of their coming in contact. Do not string them above live supply lines where it is practicable to avoid it.

Where liability of contact cannot be entirely avoided, the lines being handled shall be treated as alive (unless they are effectively grounded), and the rules of 1422, so far as they are applicable, shall be carefully observed.

G. Reporting Dangerous Conditions. Promptly report to the proper official abnormally sagging wires, broken or defective insulators, pins, crossarms, defective poles, or any other dangerous conditions of your own or other utilities.

Order 1436. Underground Lines.

A. Application of Rules. All cable splicers and other workmen in underground construction or operation shall study and strictly observe the following, in addition to the general rules in 1420 to 1424, which apply to their work.

B. Guarding Manholes, Handholes, and Street Openings. When removing manhole or handhole covers or making excavations, promptly protect the opening with a barrier, temporary cover, or other suitable guard, and see that danger signals or red lights are displayed in a location conspicuous to the traffic until permanent covers are in place or the excavations are filled.

Exception: Red lights are not required on private right of way or at other locations not accessible to vehicular or pedestrian traffic.

C. Testing for Gas. Do not enter manholes until you have assured yourself that the manholes are free from dangerous gases, by testing with approved safety lamps, by ventilation, or by other adequate methods. (See Order 1458, B, for testing for gas)

D. Watchman on Surface at Manholes. Do not enter a manhole unless a temporary cover is placed over the opening or a watchman is stationed at the surface. Where any gas is liable to be present always see that the watchman is stationed at the surface. Where any hazard is involved do not leave a manhole unwatched until all workmen are out.

E. Avoiding Flames. Do not smoke in manholes and avoid as far as practicable open flames or torches in or near manholes. Avoid sparks in handling live parts or cable sheaths, and avoid igniting the flux in soldering and splicing joints. In using hot paraffin see that it does not reach a temperature at which it will ignite. (See Order 1455, D, for avoiding flames)

F. Pulling Cables. When pulling in cables make sure that the gear cannot slip so as to injure workmen. Avoid the danger of having the hands drawn into the tackle by the pulling line.

G. Unidentified Cables. If lines and cables are not properly identified by markings or positions, do not work upon them.

H. Testing and Splicing Live Cables. Always ascertain, if practicable, whether cables are alive, by testing with the test devices provided, before cutting into the cable sheaths. Live cable should be spliced only by men experienced in the work, and they should use extreme caution and suitable devices in so doing.

I. Reporting Defects. Promptly report to your immediate superior any dangerous condition of your own or other utilities, whether observed in underground or overhead construction. Particularly report insanitary conditions, gas, or missing cable tags in manholes, and abnormally sagging wires or broken supports in overhead construction.

Order 1437. Tunnel and Subway.

A. Application of Rule. Tunnel and subway electricians, operators, and others working on or about underground electrical equipment (not in stations, substations, or in underground conduit systems) shall study and strictly observe the following, in addition to the rules in 1420, 1421, 1422, 1430, and 1436, so far as they apply to their work.

B. Dangerous Locations. The value of insulation (insulating covers) as protection from shock is reduced by the dampness usually present in the海底 or similar locations. The restricted spaces often bring the worker closer to equipment and wires than in other kinds of electrical work, and the imperfect illumination also makes special care necessary to avoid contacts. The human body and all surrounding surfaces becomes more conducting where dampness exists, and electrical shocks are, therefore, more severe.

C. Live Electrical Parts. Before handling any electrical equipment or wires make sure whether they are alive or dead.

Note: It is not advisable to work on live equipment or wires when the current can be shut off without interrupting necessary operations.

D. Unauthorized Work. Never touch or disturb any electrical equipment or wires without being authorized.

E. Standing on Ground. 1. Do not touch any electric wire, cable, or third rail, no matter how well it is insulated, while you are standing on the ground or on a grounded conducting surface, such as a pipe, track, or rail.
2. Do not touch the metal frame or case of a motor if it is ungrounded, and you are in contact with ground or a grounded object.

Note: Remember that water and the surfaces of damp ground are conducting. Insulation on a wire may look perfect, but it frequently will not prevent shock.

F. Carrying Tools. In carrying tools or metal implements in passageways containing electric wires, especially near exposed wires, never permit the tools or implements to touch them.

In particular, do not carry such objects on the shoulder when there are conductors overhead. Do not travel on that side of passageways where third rails or side trolley wires are exposed.

G. Handling and Repairing Live Parts. 1. When necessary to handle or repair live trolley wires, third rails, cables, motors, or other electrical equipment, wear suitable insulating gloves or stand on the waterproof insulating mats or platforms provided, or obtain dry wood free from metal.

2. Before handling or making use of any electrical cable, carefully examine it to make sure that its insulation is not injured.

H. Inspection of Portable Cables. Portable cables should be inspected at least once daily during the period of their use.

1. Handling Portable Devices. In handling portable motors or lamps, first make sure that the external metal frame is not alive by contact with or leakage from live parts within.

Have such portable equipment inspected at least once daily during the period of their use.

J. Fuses and Switches. Never handle fuses nor close switches or circuit-breakers unless you are authorized to perform that special duty, and then use the insulating handles or rods provided.

Before closing switches first make sure that you are not endangering other persons.

K. Injury to Cables and Wires. Do not fire shots (blasting), handle tools, or perform other work in such a manner as to injure cables or wires in the vicinity. If in doubt, consult your superior.

L. Temporary Wiring. Never use bare conductors nor arrange for earth return in the wiring of any temporary circuit.

Note: The particularly applies to the temporary portions of shotstring circuits and to the leads of portable motors and lamps.

Never employ temporary circuits without seeing that they are installed at the junction with the permanent wiring, suitable disconnecting switches or plug connectors, arranged to disconnect all conductors of the temporary circuit by a single operation.

For shot-firing circuits, their disconnectors should be left open until the shot is to be fired, and should preferably be arranged for locking in the open position.

M. General Precautions. Never get on or off locomotives or cars on the side where the trolley wire or third rail is located.

Do not place combustible or explosive materials near electric wires, trolley tracks, third rails, or motors. Do nothing that will cause sparking, or expose parts that may are or spark during operation, if any explosive gases may be present.

N. Reporting Dangerous Conditions. Promptly report to your superior any dangerous or unusual conditions observed. In particular, report the presence of gas, broken insulators, bad insulation on wires, defective third-rail construction, live frames of motors, broken ground wires on motor frames, and sparking, arcing, or shocks noticed at any point. Report also any fallen, crossed, or abnormally sagging wires, whether electric wires or not. This includes trolley wires at switches and crossings and wires injured through falling roofs.

SECTION 144. COMMUNICATION SYSTEMS—RULES FOR EMPLOYERS

Order 1446. Distribution and Enforcement of Rules.

A. Distribution. The employer shall furnish to each regular employee working on or about commercial telephone or telegraph equipment or lines, safety rules governing his conduct while so engaged, and shall take suitable means to secure the employee's compliance with the same.

B. Form. The safety rules furnished to any employee may be in such form as the employer may determine is best suited to the needs of individual employees. They shall, however, include the principles set forth in the following rules, or at least such part thereof as is applicable to the work in which the employee is engaged, and shall not conflict with these rules.

C. Interpretation. If a difference of opinion arises with regard to the meaning or application of these rules, or as to the means necessary to carry them out, the decision of the employer or his authorized agent shall be final, subject to an appeal (if taken) to the regulatory body having jurisdiction.

Order 1441. Address List and Emergency Rules.

The rule books should contain or be accompanied by the following:

A. A list of names and addresses of those physicians and members of the organization who are to be called upon in emergencies.

B. A copy of rules for first aid, prone-pressure method of resuscitation, and fire extinguishment.

These should also be kept in conspicuous locations in central offices, on line wagons, and in other locations where the number of employees and nature of the work warrants.

Order 1442. Instructing Employees.

Employees regularly working on or about communication equipment or lines, if their duties render such training necessary, shall be thoroughly instructed in approved methods of first aid, the prone-pressure method of resuscitation and fire extinguishment, and if advisable, regularly drilled.

Groups of employees, such as commercial telephone operators, shall be thoroughly drilled to make prompt and orderly exit from buildings in case of fire.
Order 1443. Qualification of Employees.

The employer shall use every reasonable means and precaution to assure himself that each employee is mentally and physically qualified to perform his work in accordance with these rules.

Order 1444. Protective Devices.

There shall be provided in conspicuous and suitable places in stations and on line wagons a sufficient supply of suitable protective, first-aid and fire-extinguishing equipment to enable employees to meet the requirements of these rules. Such devices and equipment shall be inspected or tested to insure that they are kept in good order and in dependable condition and shall not be used unless so inspected or tested. The following is a list of suitable devices and equipment, the kinds and numbers of which will depend on the requirements of each case:

A. First-aid outfits.
B. Insulating wearing apparel, such as insulating gloves, boots, and shields.
C. Safety belts.
D. Fire-extinguishing apparatus.

SECTION 145. COMMUNICATION SYSTEMS—RULES FOR EMPLOYEES

Order 1450. General Precautions.

A. Reading Warnings, Warning Others. Employees should cultivate the habit of being cautious, heed warning signs and signals, and always warn others when seen in danger near equipment and lines.
B. Inexperienced Employees. No employee shall do work for which he is not properly qualified on or about equipment or lines, except under the direct supervision of an experienced and properly qualified person.
C. Electrical Supply Equipment or Wires. Workmen whose duties do not require them to approach or handle electrical supply equipment and wires should keep away from such equipment or wires. Electrical supply equipment and wires should always be considered as alive unless positively known to be dead.
D. Safe Supports and Safety Belts. 1. Safe Supports. Employees should not support themselves on any portion of a tree, pole structure, lamp bracket, or similar fixture on poles, scaffold, ladder, roof, skylight, or other elevated structure without first making sure that the supports are strong enough, reinforcing them if necessary. Portable ladders should be in a safe position before being climbed. The slipping of a ladder at either end should be carefully guarded against, especially where the supporting surfaces are smooth or vibrating. Insecure makeshift substitutes for ladders should not be used. An employee should never trust his weight on thin wooden boxes, sinks, washbowls, window shelves, or chair backs.

A ladder should not be placed upon a box, barrel, or other movable or insecure object.

Care should be taken to see that chairs, rolling ladders, and similar equipment are in first-class condition before being used.

2. Safety Belts. Employees should not work in elevated positions unless secured from falling by a suitable safety belt or other adequate means (sometimes including suitably located pole steps). Before an employee trusts his weight to the belt, he should determine that the snaps or fastenings are properly engaged and that he is secured in his belt.

3. Safety Ropes. Ropes used for supporting boatmen's chairs, platforms, or for other purposes on which the security of the employee depends shall be frequently inspected to assure that they are maintained in good condition.

E. Duties of Foremen. 1. Duties. Each foreman in charge of work shall see that the safety rules are observed by the employees under his direction. He shall make all necessary records; reporting to his superior when required. He shall permit only authorized persons to approach places where work is being done. He shall adopt such precautions as are within his power to prevent accidents, and prohibit the use of tools or devices which are defective, or not suited to the work in hand.

2. Qualified Guides. The qualified person accompanying un instructed workmen or visitors near electrical equipment or lines shall take precautions to provide suitable safeguards and see that the safety rules are observed.

F. Handling Live Parts. No employee should touch, with bare hands, any exposed ungrounded live part of more than 150 volts to ground, unless he is insulated from other conducting surfaces, including the ground itself. When employees must touch, at the same time, two parts between which a considerable potential exists, insulating gloves or other protection shall be used.

G. Power Circuits in Central Offices. When making repairs on electric light or power circuits, the circuits shall, whenever possible, be made dead.

Where practicable, moving apparatus, as, for example, a fan, shall be stopped before working upon it.

None other than duly authorized persons shall be admitted to central-office transformer vaults or battery rooms.

Care shall be used while working on or near circuits of more than 150 volts to ground, particularly in alternating-current districts.

H. Handling Fuses or Brushes. When working on the brushes of a machine in operation, employees shall use care not to break a circuit, the flashing of which may injure the eyes or burn the hands. If it is necessary to remove a brush from the holder, the machine shall be shut down.

When inspecting or changing fuses, care should be taken to prevent injury to the eyes. If it is necessary to handle the fuses, the circuits should be cut off, if possible.
I. Battery Rooms. Smoking, or the use of open flames, or of tools which may generate sparks, should be avoided except when cells are not actively gassing and when prior ventilation has been ample. Sparks from frictional or static electricity should be avoided as they may ignite the gas if discharged close to the source, as at the vent of a sealed-type cell during overcharging. The electrolyte of storage batteries, and spray containing electrolyte, are somewhat corrosive, particularly when concentrated by evaporation, and contact with body or clothes should be avoided.

Do not handle live parts of batteries or their connections unless adequate precautions are taken to avoid shock.


A. Precautions to Be Observed Before Climbing Structures. Before climbing poles, ladders, scaffolds, or other elevated structures first assure yourself that the pole, ladder, scaffold, tree, crossarm, messenger wire, cable car, or boatswain's chair, or other elevated support is strong enough to safely sustain your weight.

On pole-replacement work no pole shall be climbed for the purpose of clearing it of all wire and cables without first guying or bracing the pole securely.

If poles or crossarms are apparently unsafe because of decay, or unequal pulls of wire on them, they should be properly braced or guyed, if necessary, before they are climbed.

An uncoiled hand line, rope, or wire of any sort should not be fastened to the employee while climbing a pole, but where this must be done the employee should exercise due care to prevent the line from catching on obstructions.

In climbing poles careful watch should be kept for nails or other foreign attachments which might catch in the clothing and cause a fall.

B. Use of Pole Steps. When poles are stepped make use of such steps in climbing, first making sure that the steps are firmly set in solid material before trusting your weight upon them. Pay particular attention, on icy poles, to each step.

Do not support yourself by pins, brackets, or conductors.

C. Spurs. Spurs with gaffs worn short shall not be used. The gaffs on spurs shall be kept sharp and spurs shall fit properly. Spurs shall not be worn on work for which they are not desired, nor while men are traveling to or from work.

D. Approaching Supply Lines. Avoid contact with all wires other than those you know to be communication wires, assuming such other wires always to be alive. Communication wires in trouble may be in contact with supply lines at some distant point, and should be treated as live supply lines unless known to be free from any dangerous voltage.

Do not approach any supply wire or supply equipment within the distances given in Order 1422 under Section 142, unless you comply with all the rules under that section.

E. Touching Equipment. While handling communication wires, metal sheaths, or communication equipment avoid touching trolley or arc-lamp span wires and supply lines or equipment. Especially avoid standing on or touching transformer cases, hangers, or connections.

F. Care About Electrical Supply Lines. Do not go among any wires until you know their voltage.

Leaning over and crowding through unprotected supply wires should be avoided wherever possible.

Place yourself so that you will not be liable to fall on supply wires should an accident occur.

Do not depend on the insulating covering of wires, and treat all wires as alive unless they have been killed properly (except communication wires known to be clear).

Treat also as alive all wires (unless thoroughly grounded) which are being strung near supply wires; regard them as being of the same voltage as the supply wires.

Avoid use of hand lines or measuring tapes containing metal strands.

When necessary to work in the vicinity of supply wires, transformers, and similar equipment assure yourself before starting work that the position of the body is such that should you momentarily forget yourself or fall, no portion of the body will come in contact with the foreign wires or equipment. Have the supply circuits killed where possible before approaching them.

Railway span wires, pull-off, and trolley brackets shall be treated as if alive, even though equipped with strain or other insulators.

G. Stringing Wires. Never string wires near live circuits except by means of suitable insulating hand lines or other appliances.

Avoid the use of single or paired wires as a substitute for a hand line.

Wires should not be strung above live circuits operating at more than 750 volts, unless the wires being strung are effectively grounded or otherwise suitably protected, or in handling them all the precautions are observed as provided in Order 1422, for work on parts at the voltage of the circuits concerned, and the spacings maintained.

Never change the strains on a pole by adding or removing wires until assured that the pole will stand the altered strains.

When wires are being pulled up on corner poles employees should stand in such a position that they cannot be struck by the wire in case it slips.

Where it is necessary to remove communication wires below which are supply wires, power should be shut off of the supply wires where possible, and, if this is not practicable, rope cradles and suitable guards should be erected. Extraordinary care should be exercised to prevent the communication wires from sagging into the supply wires.

In stringing wires, cables, messengers, span wires, or guys do not allow them to hang so as to endanger vehicles or pedestrians below, unless traffic is intercepted by watchmen or otherwise. This may necessitate keeping a watchman at the coil or reel. When stringing
wires for long distances, precautions shall be taken to prevent the possibility of vehicles or pedestrians coming into contact with the wires at the intersecting streets or highway crossings.

H. Protecting Traffic. When working overhead, keep tools and materials not in use in proper receptacles; tools or materials should not be thrown to or from the man on the pole, but should be raised or lowered by means of a hand-line, using a proper receptacle, if practicable. Also tools and loose materials should not be left at the top of poles, ladders, or other elevated structures. Workmen shall not stand where they are liable to be struck by materials dropped by men working overhead.

Pole holes, open manholes, excavations, and obstructions along the public highway and other frequently frequented places shall be protected by watchmen, barriers or suitable guards, warning signs, or danger signals so located as to be conspicuous to traffic.

When working overhead or hoisting or lowering materials above places where traffic occurs, a man should be stationed to warn passersby.

Where traffic is light, warning signs may be used in lieu of watchmen. Where traffic is congested, it may be necessary to rope off the space.

1. Reporting Dangerous Conditions. An employee should report as soon as practicable to his superior or some suitable authority any obvious hazards to life or property observed in connection with any electric equipment or lines.

Any imminently dangerous conditions shall be guarded until they can be made safe.

Order 1452. Underground Lines.

A. Guarding Manholes, Handholes, and Street Openings. When removing manhole or handhole covers or making excavations, promptly protect the opening with a barrier, temporary cover, or other suitable guard, and see that danger signals or red lights are displayed in a location conspicuous to the traffic until permanent covers are in place or the excavations are filled.

Exception: Red lights are not required on private right of way or at other locations not accessible to vehicular or pedestrian traffic.

B. Testing for Gas. Do not enter manholes until you have assured yourself that the manholes are free from dangerous gases, as indicated by approved safety lamps, by ventilation, or by other adequate methods.

When work is being carried on for any length of time in manholes where gas collects, suitable ventilation shall be provided, or tests with the safety device should be repeated at regular intervals to make certain that gas is not accumulating in the manhole in dangerous quantities.

C. Watchman on Surface at Manhole. Where any hazard to the workmen is involved observe the following:
## INDEX

Volume No. 1

References are to order numbers unless otherwise noted. The following abbreviations are used: Def. for definitions; sec. for section; vol. for volume.

<table>
<thead>
<tr>
<th>A</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandoned lines</td>
<td>Sec. 128, 1413B(3)</td>
</tr>
<tr>
<td>Accessible (Def. 1)</td>
<td>1089</td>
</tr>
<tr>
<td>Accessibility of,</td>
<td></td>
</tr>
<tr>
<td>conductors in manholes</td>
<td>1288A</td>
</tr>
<tr>
<td>conductors in stations</td>
<td>1161D</td>
</tr>
<tr>
<td>grounding conductor</td>
<td>1007A</td>
</tr>
<tr>
<td>live parts</td>
<td>1134B</td>
</tr>
<tr>
<td>manholes</td>
<td>1289C</td>
</tr>
<tr>
<td>overhead lines</td>
<td>1210</td>
</tr>
<tr>
<td>station equipment</td>
<td>1311B, 1170A, 1189C &amp; D</td>
</tr>
<tr>
<td>supply lines</td>
<td>1212</td>
</tr>
<tr>
<td>switches</td>
<td>1170A, 1216A</td>
</tr>
<tr>
<td>underground lines</td>
<td>1240</td>
</tr>
<tr>
<td>working space</td>
<td>1115A</td>
</tr>
</tbody>
</table>

| Acid                                                             | 1146      |
| fumes (See also corrosive vapors)                                | 1146      |
| resistive coverings                                              | 1146      |
| Additions, application of orders to                             | 1013B     |
| Address list                                                     |           |
| Adjustable speed motor (Def. 3)                                 | 1410C(1), 1441A |
| Adjusting lighting arrester                                       | 1190      |
| Administrative authority, (Def. 2)                              | 1194B     |
| application and waiving of rules by                             |           |
| Advisors                                                         | 1013      |
| Advisory committee                                               |           |
| Affidavit form for,                                              |           |
| contractors,                                                     |           |
| inspectors                                                       |           |
| Air-gap distance                                                 |           |
| Alive (Def. 4)                                                   |           |
| by leakage                                                      |           |
| Allowable,                                                       |           |
| fiber stresses in wood poles (Table 19 & 20)                    | 1261A(4)(c) & (d) |
| unit stresses, steel (Table 18)                                  |           |
| Amendment, emergency                                             | 1261A(c)  |
| Anchor rods                                                      | 1007      |
| Angles in line, at crossings, transverse loading at              | 1252D(4)  |
| use of guys with                                                 |           |
| Antenna conflict (Def. 76A)                                     |           |
| Antislip treads                                                  | 1020      |
| Apparatus, identification of                                     |           |
| old-dield                                                      | 1112E     |
| Apparent sag, of span (Def. 1041)                               |           |
| at any point (Def. 104A)                                        |           |
| 1402                                                            |           |
### INDEX

**Volume No. 1**

References are to order numbers unless otherwise noted. The following abbreviations are used: Def. for definitions; sec. for section; vol. for volume.

<table>
<thead>
<tr>
<th>A</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandoned lines</td>
<td>Sec. 122, 121B(3)</td>
</tr>
<tr>
<td>Accessible (def. 1)</td>
<td>1030</td>
</tr>
<tr>
<td>Accessibility of:</td>
<td>1293A</td>
</tr>
<tr>
<td>conductors in manholes</td>
<td>1141D</td>
</tr>
<tr>
<td>conductors in stations</td>
<td>1087A</td>
</tr>
<tr>
<td>grounding conductor</td>
<td>1111B</td>
</tr>
<tr>
<td>live parts</td>
<td>1112A</td>
</tr>
<tr>
<td>overhead lines</td>
<td>1113A</td>
</tr>
<tr>
<td>station equipment</td>
<td>1114A</td>
</tr>
<tr>
<td>supply lines</td>
<td>1115A</td>
</tr>
<tr>
<td>switches</td>
<td>1116A</td>
</tr>
<tr>
<td>working space</td>
<td>1117A</td>
</tr>
<tr>
<td>Acid</td>
<td>1118A</td>
</tr>
<tr>
<td>furans (See also corrosive vapors)</td>
<td>1119A</td>
</tr>
<tr>
<td>residue coverings</td>
<td>1120A</td>
</tr>
<tr>
<td>Additions, application of orders to</td>
<td>1121A</td>
</tr>
<tr>
<td>Address lists</td>
<td>1122A</td>
</tr>
<tr>
<td>Adjustable speed motor (Def. 4)</td>
<td>1123A</td>
</tr>
<tr>
<td>Adjusting lighting apparatus</td>
<td>1124A</td>
</tr>
<tr>
<td>Administrative authority, (Def. 2)</td>
<td>1125A</td>
</tr>
<tr>
<td>application and waiving of rules by</td>
<td>1126A</td>
</tr>
<tr>
<td>Advisory committee</td>
<td>1127A</td>
</tr>
<tr>
<td>Affidavit form for,</td>
<td>1128A</td>
</tr>
<tr>
<td>contractor</td>
<td>1129A</td>
</tr>
<tr>
<td>inspector</td>
<td>1130A</td>
</tr>
<tr>
<td>Air-gap distance</td>
<td>1131A</td>
</tr>
<tr>
<td>Alive (Def. 4)</td>
<td>1132A</td>
</tr>
<tr>
<td>by leakage</td>
<td>1133A</td>
</tr>
<tr>
<td>Allowable,</td>
<td>1134A</td>
</tr>
<tr>
<td>fibre stresses in wood poles (table 19 &amp; 20)</td>
<td>1135A</td>
</tr>
<tr>
<td>unit stresses, steel (table 16)</td>
<td>1136A</td>
</tr>
<tr>
<td>Ammunition, emergency</td>
<td>1137A</td>
</tr>
<tr>
<td>Anchor rod</td>
<td>1138A</td>
</tr>
<tr>
<td>Angles in line, at crossings</td>
<td>1139A</td>
</tr>
<tr>
<td>traverse leading at</td>
<td>1140A</td>
</tr>
<tr>
<td>use of guys with</td>
<td>1141A</td>
</tr>
<tr>
<td>Antisip trends</td>
<td>1142A</td>
</tr>
<tr>
<td>Apparatus, Identification of</td>
<td>1143A</td>
</tr>
<tr>
<td>oil-dipped</td>
<td>1144A</td>
</tr>
<tr>
<td>Apparent mag. of span (Def. 104A)</td>
<td>1145A</td>
</tr>
<tr>
<td>at any point (Def. 104A)</td>
<td>1146A</td>
</tr>
<tr>
<td></td>
<td>1147A</td>
</tr>
</tbody>
</table>
### Electrical Code—Index

<table>
<thead>
<tr>
<th>Order No.</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1124(C)</td>
<td>Barrels for condensers</td>
<td></td>
</tr>
<tr>
<td>1132B</td>
<td>coupled machines</td>
<td></td>
</tr>
<tr>
<td>1132G</td>
<td>disconnectors</td>
<td></td>
</tr>
<tr>
<td>1438(I)</td>
<td>protection of traffic</td>
<td></td>
</tr>
<tr>
<td>1438(C)</td>
<td>rotating machinery</td>
<td></td>
</tr>
<tr>
<td>1122A, 1181A</td>
<td>switchboard equipment, use of employees</td>
<td></td>
</tr>
<tr>
<td>1184A, 1186A</td>
<td>working space</td>
<td></td>
</tr>
<tr>
<td>124A, 124B</td>
<td>Batteries, (see also storage batteries)</td>
<td></td>
</tr>
<tr>
<td>1438E</td>
<td>emergency lighting</td>
<td></td>
</tr>
<tr>
<td>114A</td>
<td>Battery rooms</td>
<td></td>
</tr>
<tr>
<td>114B</td>
<td>smoking in</td>
<td></td>
</tr>
<tr>
<td>1438E</td>
<td>supports in</td>
<td></td>
</tr>
<tr>
<td>1438F</td>
<td>wiring in</td>
<td></td>
</tr>
<tr>
<td>114G</td>
<td>working in</td>
<td></td>
</tr>
<tr>
<td>114H</td>
<td>Bells, guarders</td>
<td></td>
</tr>
<tr>
<td>114I</td>
<td>safety</td>
<td></td>
</tr>
<tr>
<td>114J</td>
<td>blocking switches</td>
<td></td>
</tr>
<tr>
<td>114K</td>
<td>Bells</td>
<td></td>
</tr>
<tr>
<td>1238C(4)</td>
<td>binding machine frames</td>
<td></td>
</tr>
<tr>
<td>1238F(4)</td>
<td>Boxing for motors</td>
<td></td>
</tr>
<tr>
<td>1185B</td>
<td>Braces for, creeparms</td>
<td></td>
</tr>
<tr>
<td>1292E(2), 1261D(2), 1262C, 1280H(2)</td>
<td>poles, radio, branch for, communication lines at crossings, vertical conductors</td>
<td></td>
</tr>
<tr>
<td>1238D</td>
<td>Branch connections for conductors</td>
<td></td>
</tr>
<tr>
<td>1238F(2)</td>
<td>Branch circuits (Def. 12)</td>
<td></td>
</tr>
<tr>
<td>1238E(2)</td>
<td>枝榄纯电动</td>
<td></td>
</tr>
<tr>
<td>1238D</td>
<td>Bridges, clearance of conductors from guard rails</td>
<td></td>
</tr>
<tr>
<td>1238C</td>
<td>guards for trolley wires under bridges</td>
<td></td>
</tr>
<tr>
<td>1238B</td>
<td>separation of conductors attached to bridge</td>
<td></td>
</tr>
<tr>
<td>1238E</td>
<td>Bridging series lines</td>
<td></td>
</tr>
<tr>
<td>1238C</td>
<td>Brushes, handling of</td>
<td></td>
</tr>
<tr>
<td>1438D</td>
<td>Buckets</td>
<td></td>
</tr>
<tr>
<td>1438D, 1438E</td>
<td>Building, (Def. 10)</td>
<td></td>
</tr>
<tr>
<td>1238F(2), 1238D</td>
<td>as conductor supports</td>
<td></td>
</tr>
<tr>
<td>1238C</td>
<td>clearance of conductors from, separation of conductors attached to</td>
<td></td>
</tr>
<tr>
<td>1238C</td>
<td>yards and general safety</td>
<td></td>
</tr>
<tr>
<td>1238B</td>
<td>Bunched grounds</td>
<td></td>
</tr>
<tr>
<td>1036B, 1036C, 1038B, C, 1038</td>
<td>cable, buses, protection from, building, ground</td>
<td></td>
</tr>
<tr>
<td>1036B</td>
<td>Buses, protection from</td>
<td></td>
</tr>
<tr>
<td>1177A</td>
<td>Bushing</td>
<td></td>
</tr>
<tr>
<td>1184A, 1184C</td>
<td>Buse for, separation of, grounding of, cabling, (Def. 16)</td>
<td></td>
</tr>
<tr>
<td>1292B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1238E(4)</td>
<td>Cables, (see also conductors)</td>
<td></td>
</tr>
<tr>
<td>1238C</td>
<td>grades D and G</td>
<td></td>
</tr>
<tr>
<td>1238C</td>
<td>grade D</td>
<td></td>
</tr>
<tr>
<td>1238C</td>
<td>grade N</td>
<td></td>
</tr>
<tr>
<td>1238A</td>
<td>installation of</td>
<td></td>
</tr>
<tr>
<td>1182A, 1184A</td>
<td>pulling, splicing of live, strength of communication</td>
<td></td>
</tr>
<tr>
<td>1186I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
supply lines ........................................ 1244A, 1265G
grounding of ........................................ 1264G
insulation of ......................................... 1264G
neuvers for .......................................... 1264G
pole strength for .................................... 1264H
specially installed .................................. 1264A(1), 1264G(1)
splices in ............................................ 1264G
testing before working on ......................... 1265G
underground, accessibility ........................ 1293A
identification ....................................... 1268
protection of ........................................ 1264
splicing of ........................................... 1264
supports .............................................. 1262G
Cable vault (Def. 10) ............................... 1260
Calculation of stresses ............................. 1260
Cares, exercising .................................... 1420E, 1472B, 1451F
Carrying tools ...................................... 1457F
Clamps .................................................. 1461A
Catenary construction ............................... 1269D
Cedar poles (see poles) ............................ 1010
Character of construction, maintenance, etc. 1010
Checking grounds .................................. 1036B
Chief operator, ....................................... 1421D(1)
authorization from .................................. 1421D(1)
communication lines ............................... 1421F
datum .................................................. 1421F(1)
diagrams ............................................. 1421F(2)
duties of ............................................. 1421F, 1421A
Check costs ......................................... 1464C
Circuits, (Def. 17) (see also conductors) .... 1090
fusing of ............................................ 1175
grounding of ........................................ 1010, 1134, 1166GC, 1165B, 1165C
Sec. 106
operation of, by employees ...................... 1421D(1)
protection of ........................................ 1160B, 1160A, 1161A, 1175, 1190A
switches on .......................................... 1172
tagging ................................................ 1421F
Circuit breaker, (Def. 18) ........................ 1090, 1114A
arrangement ......................................... 1170A
grounding ............................................ 1110A, 1170A
guarding ............................................. 1124, 1129
installation ......................................... 1115
location ............................................. 1113, 1171
required ............................................ 1175
Classification of, .................................. 1242
circuits .............................................. 1244A
supply cables ....................................... 1244A
voltages .............................................. 1262G, 1285A
Claseness, (see also climbing space and working space) Sec. 129
branch connections .................................. 1262G(2)
cable .................................................. 1269F
cable, above rails and ground .................... 1269F
at supports ........................................ 1285A
from buildings ...................................... 1286B
from bridges ........................................ 1286B
from conductors of another line ................ 1284A
from floor .......................................... 1284A
from other conductors at crossings ............. 1283A
from poles of another line ...................... 1264B

ELECTRICAL CODE—INDEX

in manholes ......................................... 1286G
longitudinal runs ................................... 1265G
neutral .............................................. 1265G
vertical and lateral ................................ 1265G
connections on poles .............................. 1265B
contact current circuits .......................... 1265B(2)
ducts, from other structures ....................... 1265B(2)
employee on, are in arcing parts ............... 1265B(2)
high voltage ........................................ 1422E(2), 1422F
guards from live parts ............................ 1124
hand .................................................. 1124
increases for, flexible supports .................. 1265A
high voltage ........................................ 1265A
large gauge ......................................... 1265A
long spans .......................................... 1265A
suspension insulators .............................. 1265A(3)
maintenance of ...................................... 1265A(2)
metal sheath cables ................................ 1265A(2)
minimum requirements ............................. 1265A(2)
poles, from conductors on another line ........ 1254B
from curbs ........................................... 1254B
from hydrants ....................................... 1254B
from rails .......................................... 1254B
from street corners ................................ 1254B
pole steps above ground ........................... 1266B(6)
street lamps above ground ......................... 1266B(6)
from buildings ...................................... 1266B(6)
from poles ......................................... 1266B(6)
supply equipment from communication equipment 1266B(6)
trolley contact conductors ........................ 1266B(6)
above ground ....................................... 1266B(6)
above rails .......................................... 1266B(6)
from other wires at crossings ...................... 1266B(6)

Climbers ............................................. 1483E
Climbing poles ..................................... 1483C
Climbing space on poles, (Def. 19) ............. 1020, 1265G
dimensions ......................................... 1265A and E
obstruction of ...................................... 1265G
past apparatus ....................................... 1265G
through conductors on crosstrees ............... 1265G
vertical conductors .............................. 1265G
with hook-arm construction ....................... 1265G
with racks .......................................... 1265G

Closing circuits .................................... 1461G(2)
Clothes ............................................. 1411F(2)
Clothing, suitable .................................. 1410H

Code, ............................................... 1410H
history of ......................................... Page 7
list of other codes .................................. Page 8
municipal ............................................. Page 8
reference to other .................................. Page 7
requirements ....................................... Page 7

Common use of poles (Def. 20) .................... 1020
grade of construction ............................. 1120
relative levels of conductors ..................... 1294C

Communication cables, strength ................. 1265H
Control of, oil switches.......................... 1171
remote........................................ 1171A, 1171B
rotating machines.............................. 1174B, 1191B
Controllers, (Def. 26).......................... 1160
arrangement.................................... 1090
Cooperation, between utilities................. 1170A
Cooperative study............................. 1126B
Corner poles................................... 1126C
Corroding of conductors....................... 1145, 1261B
Covers for, enclosed control equipment........ 116B
Cradles.......................................... 116B
Creased poles (splice on)...................... 1261L, 1261H
Crampons, at ends of high grade of construction 1241G
at ends of transversely weak sections......... 1241D
braiding for.................................... 1253C
dimensions....................................... 1253(B), 1251D, 1253C,
grade of......................................... 1253(B)
double........................................... 1253D
grades B and C.................................. 1243H
loadings......................................... 1252B
material.......................................... 1251D(b), 1252B
minimum size.................................... 1252D
separations...................................... 1252D
steel.............................................. 1252B
strength.......................................... 1252D
Crossties........................................ 1261D(3), 1261D, 1263C
Crossties, average pole strength not applicable... 1251D, 1263C
average span lengths not applicable.......... 1251D
communication lines over, railways......... 1251D
conductors...................................... 1251D
in service....................................... 1251D
span lengths.................................... 1251D

duct system..................................... 1251D
Electricity, use of................................ 1252B
Electrical apparatus........................... 1252B
Electrical apparatus, (see also trolley contact conductors) 1242D, 1242B(2), 1241C, 1241C
Electrical contacts................................ 1241C
Electricity, use of................................ 1252B
Electrical apparatus........................... 1252B
Electrical apparatus, (see also trolley contact conductors) 1242D, 1242B(2), 1241C, 1241C
Electrical contacts................................ 1241C
responsibility, rules, communication system
Enclosed (Def. 45)
Enforcement of rules by distribution of rule books
Entering machinery
Equipment, (Def. 46A)
accessibility of connections to, and wire runways, grounding of
emergency for work on live parts
grounding during repairs
grounding of
guarding (see guarding)
identification of (see identification) inspection of
isolation
live, handling of
on poles
permission to work on
protective arrangement of
request for killing of
switchboard
tests of
Existing installations
Exits, station and substations
Experiments, permissible under supervision
Explosives
Explosive proof (Def. 47)
Exposed, (Def. 48)
communication lines
conductors

to higher voltage
Extraction, application of rules to
Extermally operable (Def. 49)
Extermities
F
Factor of safety
Factory tests of insulators
Factory yard (Def. 50)
Falling objects
Feeder, (Def. 51)
electric railway
Protection of supply
Fences around substations
Part 1
Field exhaust
Fire alarm conductors
Fire extinguishers
Fire hydrants, horizontal clearing from poles
Fireproof construction for supply stations
First aid, instruction of employees
outside
First-aid equipment
Fittings, (Def. 52)
approval

ELECTRICAL CODE—INDEX

Fixtures, lighting, sockets & lampholders or plug receptacles
Frame-proofing
Flammable gas and flammables
Flash-over voltage for insulators
Fisk surfaces, wind pressure on
Flexible metallic tubing (Def. 53)
Flexible line supports
Floor
surfaces (See also mats)
Places in storage-battery rooms
Flying tape, use of
Footways, clearances above
Footway, culverts of
Formal public service commission orders
Form of affidavits
Foundations for, ducts
Frame switches
Franchises
Fuses (See also deteriorating agencies)
Pans
arrangement
connected by switch
enclosure
grounding of cases
guarding
handing of
in ground conductors
on switchboard
working on
Fuses and circuit-breakers
arrangement
enclosures for
guarding against arcing of
live parts of
Identification of
in ground conductors
in grounding conductors
installation of
marking
where required
working on

G
Gages (gage) (Def. 52)
Galvanizing
Garage (Def. 54)
Gas, flammable
in underground systems
plumbing for
Gauges (Def. 53)
Gas, (Def. 55)
General requirements in supply line operation
General requirements
General requirements for overhead & underground lines
General-use Switch (Def. 56)
<table>
<thead>
<tr>
<th>Generators (See also motors)</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>leads</td>
<td>1161C, D</td>
</tr>
<tr>
<td>protection of</td>
<td>1196</td>
</tr>
<tr>
<td>Gloves, Insulating</td>
<td>128A, 1176, 1411, 142B, 1434C</td>
</tr>
<tr>
<td>Goggles</td>
<td>1181D, 1411F, 142G</td>
</tr>
<tr>
<td>Good equipment, conformity with</td>
<td>1326C</td>
</tr>
<tr>
<td>Grade of additional requirements</td>
<td>1241B</td>
</tr>
<tr>
<td>change in</td>
<td>1262</td>
</tr>
<tr>
<td>communication conductors</td>
<td>1242</td>
</tr>
<tr>
<td>communication conductors used in operation of supply lines</td>
<td>1242C</td>
</tr>
<tr>
<td>communication conductors over railroads &amp; supply lines</td>
<td>1241D</td>
</tr>
<tr>
<td>conductors</td>
<td>1243</td>
</tr>
<tr>
<td>conductor fastenings</td>
<td>1243C</td>
</tr>
<tr>
<td>constant current circuits</td>
<td>124A</td>
</tr>
<tr>
<td>cathodes</td>
<td>1201L</td>
</tr>
<tr>
<td>crossarms</td>
<td>1243B, 1261D, 1263C</td>
</tr>
<tr>
<td>fire-alarm conductors</td>
<td>1241D</td>
</tr>
<tr>
<td>foundations</td>
<td>1261B, 1263B, 1263C</td>
</tr>
<tr>
<td>guys</td>
<td>1261C, 1263B, 1263C</td>
</tr>
<tr>
<td>insulators</td>
<td>1243C, Sec. 127</td>
</tr>
<tr>
<td>joint pole at crossings</td>
<td>1263C</td>
</tr>
<tr>
<td>lighting protection wires</td>
<td>1250F</td>
</tr>
<tr>
<td>neutral</td>
<td>1250D</td>
</tr>
<tr>
<td>order of grades</td>
<td>1251C</td>
</tr>
<tr>
<td>pines</td>
<td>1254C, 1261E</td>
</tr>
<tr>
<td>poles and towers</td>
<td>1254A, 1261A, 1263A</td>
</tr>
<tr>
<td>railway fencers</td>
<td>1242D</td>
</tr>
<tr>
<td>supply lines</td>
<td>1241, 1262, 1263D</td>
</tr>
<tr>
<td>supply services</td>
<td>1256E</td>
</tr>
<tr>
<td>supporting structure</td>
<td>1243</td>
</tr>
<tr>
<td>trolley contact conductors</td>
<td>1242B</td>
</tr>
<tr>
<td>under two or more conditions</td>
<td>1241B</td>
</tr>
<tr>
<td>Grades of construction, B, C, D</td>
<td>1251</td>
</tr>
<tr>
<td>N</td>
<td>1252</td>
</tr>
<tr>
<td>relative order of required, at crossings</td>
<td>1251C</td>
</tr>
<tr>
<td>at crossings</td>
<td>1251D</td>
</tr>
<tr>
<td>busses</td>
<td>1255C</td>
</tr>
<tr>
<td>checking</td>
<td>1031B(2)</td>
</tr>
<tr>
<td>clamps</td>
<td>1035B</td>
</tr>
<tr>
<td>connections, artificial</td>
<td>1035B(2), 1038A, 1037D</td>
</tr>
<tr>
<td>at building service</td>
<td>1035B</td>
</tr>
<tr>
<td>contact surfaces</td>
<td>1037C, 1036C</td>
</tr>
<tr>
<td>direct current</td>
<td>1031A</td>
</tr>
<tr>
<td>for alternating-current systems</td>
<td>1031B</td>
</tr>
<tr>
<td>for direct-current systems</td>
<td>1031A</td>
</tr>
<tr>
<td>gas piping</td>
<td>1036A</td>
</tr>
<tr>
<td>individual services</td>
<td>1031B</td>
</tr>
<tr>
<td>location of (for noncurrent-carrying parts)</td>
<td>1032, 1033, 1034</td>
</tr>
<tr>
<td>methods of making</td>
<td>1037</td>
</tr>
<tr>
<td>multiple</td>
<td>1036D</td>
</tr>
<tr>
<td>number</td>
<td>1031B</td>
</tr>
<tr>
<td>permanent and effective</td>
<td>1038A, 1038B</td>
</tr>
<tr>
<td>pipe</td>
<td>1038</td>
</tr>
<tr>
<td>to building frames</td>
<td>1038A</td>
</tr>
<tr>
<td>to piping systems</td>
<td>1038C</td>
</tr>
</tbody>
</table>

**ELECTRICAL CODE—INDEX**

| to railway returns         | 1038D |
| within building served     | 1038A, 1048F |
| detectors, grounding conductors for | 1038A |
| where required              | 1038A |
| resistance                  | 1038B |
| checking                    | 1038A |
| limits of                   | 1038B |
| standing on                 | 1437E |
| wire                        | 1035 |
| Grounded, (Def. 56)         | 1035 |
| circuits, testing           | 1437B |
| conductor, continuity of    | 1035, 1103 |
| supports                    | 1035 |
| switch in                   | 1127 |
| permanently (Def. 92)       | 1035 |
| plug                        | 1279C, 1279C |
| Grounding, alternate methods | 1035 |
| arresters                   | 1035A |
| auxiliaries                 | 1119, 1215A |
| cable sheath                | 1119C |
| capacity of                 | 1250C |
| circuits                     | 1035 |
| accessible to public        | 1035, 1035A, 1036 |
| attachment of               | 1035A |
| capacity of                 | 1036, 1223H(2) |
| continuity of               | 1036 |
| current in                  | 1036 |
| for conduit, cable sheath, & metal raceways | 1036C |
| for ground detection        | 1036, 1038, 1034 |
| for lighting arresters       | 1038A, 1038B, 1038C, 1038D, 1038E, 1038F |
| for lines                    | 1038A, 1038B, 1038C, 1038D, 1038E, 1038F |
| for fixed equipment          | 1038A, 1038B, 1038C, 1038D, 1038E, 1038F |
| for portable equipment      | 1038A, 1038B, 1038C, 1038D, 1038E, 1038F |
| for rotating machinery      | 1038A, 1038B, 1038C, 1038D, 1038E, 1038F |
| insulation                  | 1038A, 1038B, 1038C, 1038D, 1038E, 1038F |
| joints                      | 1038A, 1038B, 1038C, 1038D, 1038E, 1038F |
| material                    | 1038A, 1038B, 1038C, 1038D, 1038E, 1038F |
| mechanical protection       | 1038A, 1038B, 1038C, 1038D, 1038E, 1038F |
| separate                    | 1038C |
| size of                      | 1039 |
| switch in                    | 1038A |
| underground                  | 1038A |
| conduit                      | 1038A |
| connections                  | 1038A |
| coupled machines             | Sec. 108, 1096, 1096F |
| devices                      | 1109P |
| distribution systems         | 1036, 1170, 1411F(7), 1424D |
| effective protection measure | Sec. 103 |
| equipment, conduit, metal raceway and the like | 1038A |
| equipment during repair      | 1038B, 1039, 1038C |
| 1126C |
Guying at a distance
flexible supports................. 1281A(8), 1292A(8)
for communication lines at railway crossings.
longitudinal....................... 1282C(4)
transverse......................... 1282C(8)

Guys
anchor rods....................... 1292G
attachment....................... 1292G
clearance, from other wires...
from rails or ground............... 1292
fastenings for................... 1292(2)
for flexible supports........... 1291A(5)
for lines in exposed locations.
for steel structure.............. 1261C(3)
general requirements........... 1262
grades, B, and C................ 1261C
D.................................. 1262C
N.................................. 1263B
grounding......................... 1263H
guards for, mechanical........... 1262A
head, for communication lines crossing railways
insulation of..................... 1262P
insulators for.................... 1263A
location.......................... 1263C
strength of....................... 1261C(3), 1262C(4)
take total load................... 1261C(4), 1262C(3), 1262B
used with, steel supports..... 1261C(3)
wood and concrete.............. 1261C(4)

Hand clearance.................. 1286D
Handholes (Def. 60) (See manholes).... 1090
Hand line, specification for.... 1433P(5)
Handling connecting lines...... 1432H
Handling live equipment........ 1422
Handling series circuits...... 1422A
Hazards; conditions of......... 1240
Hazardous locations (Def. 61).... 1090, 1114B, 1123B, 1127A,
1135B, 1141, 1152, 1164A
Hazardous locations, conductors in.... 1164
storage batteries rooms........ 1164
Head guys (See guys, guying).... 1164
Headroom of passageway and working spaces
Hearth, dissipation of, in ducts.. 1293H
Heavy loading.................. 1284, 1292
Height of pins.................... 1286E(3)
High voltage contact conductors.... 1299A
High voltage, clearance of employees from.... 1422C(1)
Highways
clearance of wires over........ 1292
clearance of wires along........ 1292
obstruction by poles... 1291
History of code revision....... Page 7
Histories (Def. 60)............. 1090
Horizontal separation between line conductors.... 1291
Hydraulics, clearance of poles and towers from.... 1291A

I

Identification.................... 1183
Identification of apparatus.... 1299
circuits......................... 1182C, 1166C, 1298
collectors....................... 1299A, 1299
equipment....................... 1299A
equipment in manholes.... 1299, 1299
generators...................... 1192B
lines and equipment....... 1288A, 1411D
motors......................... 1192B
poles......................... 1299A(6)
station equipment............ 1192
switchboard equipment....... 1113
transformer secondaries...... 1111
Illumination..................... 1111
of storage-battery rooms...
of supply stations............ 1111, 1116
of switchboards............. 1181B
Incandescent (Def. 63)....... 1059
Installation, emergency....... 1059B
Instructing employees........ 1410B, 1422
Instructions to employees.... 1411E
Instruments, grounding of.... 1053C, 1187
switchboard.................... 1185
Instrument transformers.... 1150, 1164, 1187
grounding...................... 1053C
Insunated (Def. 64)............ 1059
Insulating (Def. 65)............ 1059
Insulator supports............ 1164A
insulating or adding to protect persons.... 1229, D, F
gloves......................... 1125A, 1176, 1411F, 1422A(4).
guards......................... 1422B, 1434C
guyed lines from poles..... 1126, 1164A
live parts of switchboards.... 1184A
metal, floor, or platforms (See metal)... supports.... 1184B
wearing apparel............. 1411F(3), 1444B
Insulation and grounding....... 1059
Insulation, cutting into.... 1422A(4)
Instate dependence on...... 1422A(2)
Insulation for, conductors dependence...
conductors in battery rooms...
grounding conductor........ 1085
lightning protection equipment
protection of ................. 1161A
services..................... 1269E(1)
<table>
<thead>
<tr>
<th>MAXHOLDS (Def. 86)</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>avoidance in...</td>
<td>1028, 1922</td>
</tr>
<tr>
<td>avoid use of...</td>
<td>1455E, 1455D</td>
</tr>
<tr>
<td>conductor location...</td>
<td>1456E, 1456D</td>
</tr>
<tr>
<td>construction of...</td>
<td>1235, 1264, 1268</td>
</tr>
<tr>
<td>boost in...</td>
<td>1292</td>
</tr>
<tr>
<td>dimensions...</td>
<td>1299F</td>
</tr>
<tr>
<td>drainage...</td>
<td>1253B</td>
</tr>
<tr>
<td>ducts entrance into...</td>
<td>1251F</td>
</tr>
<tr>
<td>entrance to...</td>
<td>1254F</td>
</tr>
<tr>
<td>guarding of live parts in...</td>
<td>1296</td>
</tr>
<tr>
<td>identification of...</td>
<td>1298E, 1465B, 1465D, 1465A, 1465C</td>
</tr>
<tr>
<td>jointly used...</td>
<td>1291E</td>
</tr>
<tr>
<td>location of...</td>
<td>1290C, 1292</td>
</tr>
<tr>
<td>minimum strength...</td>
<td>1292A</td>
</tr>
<tr>
<td>opening...</td>
<td>1292E</td>
</tr>
<tr>
<td>precautions with fire in...</td>
<td>1465A, 1465D</td>
</tr>
<tr>
<td>strength...</td>
<td>1292A</td>
</tr>
<tr>
<td>supporting...</td>
<td>1292D</td>
</tr>
<tr>
<td>supports...</td>
<td>1465B, 1465C</td>
</tr>
<tr>
<td>ventilation...</td>
<td>1292D</td>
</tr>
<tr>
<td>watchmen for...</td>
<td>1465E, 1465F</td>
</tr>
<tr>
<td>Manuf. (Def. 81)</td>
<td>1259B(2)</td>
</tr>
<tr>
<td>operation...</td>
<td>1030</td>
</tr>
<tr>
<td>Manufacturing processes in stations...</td>
<td>1172</td>
</tr>
<tr>
<td>Marking of...</td>
<td>1101B</td>
</tr>
<tr>
<td>insulators...</td>
<td>1271</td>
</tr>
<tr>
<td>pole...</td>
<td>1214C</td>
</tr>
<tr>
<td>switch...</td>
<td>1065A</td>
</tr>
<tr>
<td>Master service (Def. 82)...</td>
<td>1060</td>
</tr>
<tr>
<td>Materials for...</td>
<td>1060</td>
</tr>
<tr>
<td>ground conductors...</td>
<td>1065</td>
</tr>
<tr>
<td>Mats...</td>
<td>1214C(6)</td>
</tr>
<tr>
<td>Mats, floors and platforms, insulating, as guards for...</td>
<td>1185B</td>
</tr>
<tr>
<td>live parts of...</td>
<td>1264</td>
</tr>
<tr>
<td>machines...</td>
<td>1106A</td>
</tr>
<tr>
<td>station equipment...</td>
<td>1106A</td>
</tr>
<tr>
<td>switchboards...</td>
<td>1106A</td>
</tr>
<tr>
<td>switches...</td>
<td>1106A</td>
</tr>
<tr>
<td>Mechanical protection of conductors...</td>
<td>1176</td>
</tr>
<tr>
<td>Messaging, repeating of...</td>
<td>1420L</td>
</tr>
<tr>
<td>Messengers...</td>
<td>1266J</td>
</tr>
<tr>
<td>communication cable...</td>
<td>1061(1), 1063(1)</td>
</tr>
<tr>
<td>communication conductors paired...</td>
<td>1061(1), 1062</td>
</tr>
<tr>
<td>sag...</td>
<td>1261(1)(b)</td>
</tr>
<tr>
<td>size...</td>
<td>1261(1)(a)</td>
</tr>
<tr>
<td>supply installation cable...</td>
<td>1241(1)(a)</td>
</tr>
<tr>
<td>supply cable...</td>
<td>1081(2)</td>
</tr>
</tbody>
</table>

**ELECTRICAL CODE—INDEX**

| Name plates... | 1129 |
| Nature of ground connection... | Sec. 110 |
| Neutral conductors, grounding of... | 1031, 1031B(5) |
| clearance... | 1220C |
| Multiscale assembly (Def. 87)... | 1067 |
| Multiples, artificial grounds... | 1067 |
| Municipal, codes jurisdiction... | 1067B |

| NEW CONSTRUCTION (Def. 88)... | 1060 |

| clearances... | 1168A, 1168C, 1242, 1261G(1), 1261H(1), 1261B(2) |
| Meters, care about live parts... | 1461C |
| open circuits at connections... | 1461D(3), 1461E |
| reporting defects... | 1461G |
| special tools... | 1461F |
| tapped joints... | 1451B |
| water, ground connections near... | 1068A, B, 1087 |
| shorting of... | 1067A |
| Methods for protective grounding... | Sec. 103, 1067 |
| of construction... | 1065, 1067 |
| of first-aid instruction... | 1011B |
| of providing longitudinal strength... | 1410D |
| Minimum... | 1261A(6) |
| clearance for live parts... | 1124 |
| pole sizes... | 1261(2), 1261(2), 1261(2) |
| sizes of conductors... | 1261(2), 1261(2), 1261(2) |
| size of crossarms... | 1261D(2) |
| Minor, communication lines (Def. 76 & 83)... | 1067 |
| Miscellaneous requirements for overhead lines... | Sec. 122 |
| Modification of... | 1018 |
| Moisture and weather... | 1020 |
| construction (See wood molding and metal raceways)... | 1110B(5), 1112B |
| wood... | 1286 |
| Motion-pile... | 1018 |
| studi... | 1200 |
| Motor circuit switch (Def. 86)... | 1200 |
| Motor generators, control of... | 1200 |
| Motors and generators... | 1200 |
| control devices for... | 1200 |
| enclosed type... | 1200, 1205A |
| guards for live parts... | 1200, 1204A |
| identification of... | 1200, 1205A |
| in hazardous locations... | 1200, 1205A |
| leads of... | 1132B |
| location... | 1133B, 1134A |
| speed limit... | 1120B |
| stops... | 1120C |
| terminal bases... | 1120A |
| Movable equipment (Def. 86)... | 1120A |
| Moving parts, care about, by employees... | 1430C |
| protection against... | 1120, 1430C |
| Multi-core assembly... | 1120A |
| Multiple, artificial grounds... | 1067 |
| grounds... | 1067B |
| Municipal codes jurisdiction... | 1067B, 1067C, 1067C, 1067D |

| Name plates... | 1129 |
| Nature of ground connection... | Sec. 110 |
| Neutral conductors, grounding of... | 1031, 1031B(5) |
| clearance... | 1220C |
| Multiscale assembly (Def. 87)... | 1067 |
| Multiples, artificial grounds... | 1067 |
| Municipal, codes jurisdiction... | 1067B |

| NEW CONSTRUCTION (Def. 88)... | 1060 |
N-grade construction ........................................... 1263
Noncombustible construction .................................. 1110D
Noncurrent-carrying parts grounding .......................... 1032, 1033, 1034, 1123
frames of generators, cases of transformers, etc. 1113B, 1134B, 1185A, 1190
in urban districts metal conduit, cable sheath, etc. 1113B
where leakage is liable to occur and create hazard 1178
isolation grounding and marking .............................. 1214B
Notification to other utilities .................................. 1012B
Number of artificial grounds .................................. 1011B(5), 1016C

O
Obstruction of highway ....................................... 1041
Obstruction on poles .......................................... 1280A(7)
Oil filled apparatus ........................................... 1114
lightning arresters ........................................... 1100
requirements for, general .................................... 1144
switches ..................................................... 1171
transformers ................................................ 1158
Oil switches .................................................. 1144A
Omission of guys, communication line crossings ........... 1016C(2)
Open communication conductors .............................. 1012H
Open circuits ................................................. 1431D
Open wire communication lines ............................... 1237A
Open wires (Def. 99) ......................................... 1020
Operations line and equipment ................................ 1010
rules ......................................................... 1481

Operation, at stations of electrical equipment and lines 1412D(2)
Order, of grades of construction, of the Public Service Commission Page 6
Organization diagram ......................................... 1416B
Outlet (Def. 50) .............................................. 1020
Outline lighting (Def. 91) .................................... 1020
Overhead and underground lines Part 2
accessibility .................................................. 1212
design and construction ...................................... 1210
installation and maintenance ................................. 1211
Overhead lines, operation .................................... 1433
grounding when worked on .................................. 1423F
miscellaneous requirements Sec. 123
precautions in climbing structures .......................... 1421A

P
Painting steel poles ........................................... 1281A(3)
Painted conductors .......................................... 1283A(1)(a), 12613, 12623(5),
Panelboard (Def. 92) (See switchboards) .................. 1028
Parts to be grounded ........................................ 1210H
Passageways .................................................. 1116E
guarding equipment near ..................................... 1194A(2), 1186A, 1190B
Penalties ..................................................... 1014C
Pendants (See also portable) ................................ 1111D
Permanent supporting surface for workmen ................. 1124A

Published by the National Fire Protection Association

ELECTRICAL CODE—INDEX

Permanently grounded (Def. 59) ............................. 1020
Permission
to work ..................................................... 1433B
Phase, failure ............................................... 1132
Physicians addresses ........................................ 1416G, 1416I
Pile posts (see poles) ......................................... 1416C
Pins, grade of ............................................... 1243C
grade D ...................................................... 1261
grade D. .................................................... 1262E
grounded ..................................................... 1276, 1278
material ..................................................... 1261, 1262E(1)
size ......................................................... 1261, 1262E(2)
strength ..................................................... 1261, 1262E(2)
Pins and conductor fastenings ............................... 1261H
Pip spacing .................................................. 1235
Pipe connections for grounding ............................. 1016E, 1016F
Pipe for artificial system grounds .......................... 1016B(5), 1016B
Plaques, insulating (See mats)
protection of ............................................... 1112
Plug connectors .............................................. 1111E, 1116H
Plugs attachment .......................................... 1111B
Plug-type switchboards ...................................... 1116I
Points
of attachment of grounding conductors .................. 1031, 1037
A. C. systems .............................................. 1031B
D. C. systems .............................................. 1031A
Pole face (Def. 94) ........................................ 1020
Poles
attachment of guys to .................................... 1226C
deer crossings from, conductors ........................... 1224, 1225, 1229
from hydrants .............................................. 1221A
from rails .................................................. 1251D
from street corners and curbs .............................. 1251B, 1224C
rubbish ..................................................... 1251B, 1250A

discharge from ........................................... 1251B

degraded and deforestation of .............................. 1260

depth of setting .......................................... 1261, 1262H

equipment on .............................................. 1235

exposure to trees .......................................... 1234E, 1236A(1)

foundations ................................................ 1241A, 1251B

grade of grounding ........................................ 1254A, 1251A

guards for ................................................ 1280A(2)(a)
guy wire .................................................... 1251A, 1252C, 1252

guy wire head clearance ................................... 1252D
identification of .......................................... 1280A(6), 1286A

jointly used, grade of .................................... 1254A

relative conductor levels .................................. 1250
supply communication circuits ............................ 1222

loading .................................................... 1284
location of ................................................ 1281, 1262A(4), 1262A(5)
tongue and strength of, special cases ..................... 1283A

maintenance ............................................... 1281A(4), 1282K
minimum size .............................................. 1281A(4), 1282A(6), 1282A(5),

obstructing traffic ........................................ 1283

obstructions .............................................. 1280A(7)
precautions when climbing...
protection, against climbing...
against fire...
against mechanical injury...
protective coatings...
selected...
sprayed...
smoothed...
steel...
flexible...
foundations...
strength of...
at angles and dead ends...
for grades B and C...
for grade D...
for grade N...
when used jointly...
stresses in, maximum...
testing of, before climbing...
top diameter...
warning signs...
wood...
Pole steps...
Porcelain, bushings...
insulators...
terminal bases...
Portable equipment (Def. 95)...
cable, inspection of...
device, grounding of...
handing...
equipment, grounding of...
Portable, cable connection for...
grounding...
installation of...
in subways operation...
Position and connection of switches...
Postheads, use of...
Power circuits in central office...
Prime movers, speed limit for...
Private plant grounding...
Proceeding of work...
Protecting (see also guarding)...
circuits...
conductors, longitudinal runs...
vertical runs...
control circuits...
ends and joints...
moving parts...
station equipment...
traffic...
working, by grounding...
by switches and disconnectors...
Protection against, arcing flashover...
arcing of underground cables...
deteriorating agency...
raids and falling objects...

---

Protection...
low and under voltage of conductors...
of control circuits...
earth ground...
of exposed conductors...
of longitudinal runs...
Protective, arrangements of equipment...
covering...
for metal parts...
for steel supporting structures...
device...
grounding...
grounding of,...
methods...
Public Service Commission, Order...
Pulling cables...
Furnace voltages for insulators...
Qualifications of employees...
Qualified (Def. 96)...
Qualified guides...
Railways (Def. 97)...
Railroads...
on communication lines at crossings...
on supply lines, vertical...
vertical climbing space for...
Reminders...
grounding of...
guards for switchboards...
on machines...
Railroads...
clearance of wires over...
crossing vertical separation of communication conductors...
Potential clearance of lines over...
tracks, horizontal clearance to poles...
Railway clearance of poles from...
Railway construction...
assurance against loss of power...
at railway crossings...
high voltage contact conductor...
supports for contact conductors...
third rails...
Railway crossings by electric railways...
clearance of conductors above rails...
crossing vertical separation of communication conductors...
death of construction at...
Railway, testers grades of construction...
Rain-High (Def. 89)...
Rating (Def. 59)...
Ratio, flashover to puncture voltage...
Readily accessible (Def. 100)...
Readjustment of sags...
Realization of intent of rules...
<table>
<thead>
<tr>
<th>Order No.</th>
<th>Receptacle outlet (Def. 161)</th>
<th>1020</th>
</tr>
</thead>
<tbody>
<tr>
<td>1020</td>
<td>Reconstruction (Def. 102)</td>
<td></td>
</tr>
<tr>
<td>Record of defects</td>
<td>1212A(A)</td>
<td></td>
</tr>
<tr>
<td>1212A(A)</td>
<td>Reduction in number of wires, permissible</td>
<td>1246B</td>
</tr>
<tr>
<td>1246B</td>
<td>Redowred poles (see poles)</td>
<td></td>
</tr>
<tr>
<td>1246H</td>
<td>Regulators, induction</td>
<td></td>
</tr>
<tr>
<td>1148B, 1153, 1266B</td>
<td>Reinforced concrete poles</td>
<td></td>
</tr>
<tr>
<td>Sec. 122</td>
<td>Relations between various classes of lines</td>
<td>1220A(C)</td>
</tr>
<tr>
<td>1220A(C)</td>
<td>Relative levels of wires</td>
<td></td>
</tr>
<tr>
<td>1220B</td>
<td>at crossings</td>
<td></td>
</tr>
<tr>
<td>1220C</td>
<td>minor extensions</td>
<td></td>
</tr>
<tr>
<td>1220D(1)</td>
<td>preferred levels</td>
<td></td>
</tr>
<tr>
<td>1220D(1)</td>
<td>supply and communication lines</td>
<td>1220B</td>
</tr>
<tr>
<td>1220C</td>
<td>supply lines of different voltage</td>
<td></td>
</tr>
<tr>
<td>1170A, 1171, 1174B, 1181B</td>
<td>Remote control</td>
<td></td>
</tr>
<tr>
<td>1424E</td>
<td>Removing grounds</td>
<td></td>
</tr>
<tr>
<td>1424E</td>
<td>Repairing and inspecting</td>
<td>1612</td>
</tr>
<tr>
<td>1424E</td>
<td>Repairing, lines</td>
<td>1213A(6), 1262K</td>
</tr>
<tr>
<td>station equipment</td>
<td>1126C</td>
<td></td>
</tr>
<tr>
<td>1126C</td>
<td>subway equipment</td>
<td>1437G</td>
</tr>
<tr>
<td>1437G</td>
<td>Replacing mangers</td>
<td>1420E</td>
</tr>
<tr>
<td>1420E</td>
<td>Replacing equipment</td>
<td>1213A(6), 1262K</td>
</tr>
<tr>
<td>1485G, 1465F</td>
<td>Reporting dangerous conditions</td>
<td></td>
</tr>
<tr>
<td>1465F</td>
<td>Reporting, defects</td>
<td></td>
</tr>
<tr>
<td>1465F</td>
<td>trouble on circuits</td>
<td></td>
</tr>
<tr>
<td>1465F</td>
<td>when lines are clear</td>
<td>1423E</td>
</tr>
<tr>
<td>1423E</td>
<td>Requirements for in stations</td>
<td>1100</td>
</tr>
<tr>
<td>Part 3</td>
<td>overhead and underground lines</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>rooms and spaces</td>
<td>1110</td>
</tr>
<tr>
<td>Part 1</td>
<td>stations and substations</td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>two workmen</td>
<td></td>
</tr>
<tr>
<td>Part 1</td>
<td>Resistance devices</td>
<td>1154</td>
</tr>
<tr>
<td>1154</td>
<td>location</td>
<td></td>
</tr>
<tr>
<td>1154</td>
<td>Resistance of ground connections</td>
<td>1038</td>
</tr>
<tr>
<td>1038</td>
<td>Responsibility, between officials and employees</td>
<td>1410B</td>
</tr>
<tr>
<td>1410B</td>
<td>designation of</td>
<td></td>
</tr>
<tr>
<td>1410B</td>
<td>transferring of</td>
<td></td>
</tr>
<tr>
<td>1410B</td>
<td>Renting service</td>
<td>1421E</td>
</tr>
<tr>
<td>1421E</td>
<td>Recruitment from schools</td>
<td></td>
</tr>
<tr>
<td>1421E</td>
<td>Rhoats</td>
<td>1405D, 1406A, 1462</td>
</tr>
<tr>
<td>1462</td>
<td>location</td>
<td>1154</td>
</tr>
<tr>
<td>1154</td>
<td>Rigid conduit (Def. 29)</td>
<td>1242</td>
</tr>
<tr>
<td>1242</td>
<td>Ries</td>
<td>1235C, 1297</td>
</tr>
<tr>
<td>1235C</td>
<td>clearance above ground</td>
<td>1239Y</td>
</tr>
<tr>
<td>1239Y</td>
<td>grounding</td>
<td></td>
</tr>
<tr>
<td>1239Y</td>
<td>Rivets</td>
<td>1201A(G)</td>
</tr>
<tr>
<td>1201A(G)</td>
<td>Roadways, clearances of wires and conductors above</td>
<td>1252</td>
</tr>
<tr>
<td>1252</td>
<td>for overhead and underground and over</td>
<td></td>
</tr>
<tr>
<td>1269A, 1269B</td>
<td>Roads, clearance of wires and conductors</td>
<td></td>
</tr>
<tr>
<td>1269A</td>
<td>conduits</td>
<td></td>
</tr>
<tr>
<td>1269C</td>
<td>Rooms and spaces</td>
<td>1264C</td>
</tr>
<tr>
<td>1264C</td>
<td>Rotating equipment</td>
<td></td>
</tr>
<tr>
<td>Sec. 113</td>
<td>Rotating machinery</td>
<td>1122</td>
</tr>
<tr>
<td>1122</td>
<td>attendance</td>
<td>1126A, 1176, 1426B, 1434C</td>
</tr>
<tr>
<td>1126A</td>
<td>grounding</td>
<td>1124C</td>
</tr>
<tr>
<td>1124C</td>
<td>guarding live parts of</td>
<td>1131B</td>
</tr>
<tr>
<td>1131B</td>
<td>guarding moving parts</td>
<td></td>
</tr>
<tr>
<td>1122</td>
<td>Rubber</td>
<td></td>
</tr>
<tr>
<td>1122</td>
<td>gloves</td>
<td>1126A, 1176, 1426B, 1434C</td>
</tr>
<tr>
<td>1126A</td>
<td>mats</td>
<td></td>
</tr>
<tr>
<td>1124C</td>
<td>Rubbish near poles</td>
<td>1126A(1)</td>
</tr>
<tr>
<td>1126A(1)</td>
<td>Rules book of</td>
<td></td>
</tr>
<tr>
<td>1126A(1)</td>
<td>enforcement of</td>
<td></td>
</tr>
<tr>
<td>1140A(1), 1440</td>
<td>for employees, communication systems</td>
<td>1140A</td>
</tr>
<tr>
<td>1140A(1), 1440</td>
<td>supply systems</td>
<td></td>
</tr>
<tr>
<td>1140A(1), 1440</td>
<td>interpretation of</td>
<td></td>
</tr>
<tr>
<td>1142 and 148</td>
<td>Rural districts (Def. 103)</td>
<td></td>
</tr>
<tr>
<td>1142 and 148</td>
<td>supply lines in</td>
<td></td>
</tr>
<tr>
<td>1142</td>
<td>Safo supports for workmen</td>
<td>1421I, 1435B, 1493D, 1450D, 1450D</td>
</tr>
<tr>
<td>1421I</td>
<td>Safety appliances, furnishing</td>
<td>1126, 1411F, 1444</td>
</tr>
<tr>
<td>1126</td>
<td>use of</td>
<td></td>
</tr>
<tr>
<td>1126</td>
<td>Safety boards, inspection of</td>
<td>1430B</td>
</tr>
<tr>
<td>1430B</td>
<td>provision of</td>
<td>1411G</td>
</tr>
<tr>
<td>1411G</td>
<td>use of</td>
<td></td>
</tr>
<tr>
<td>1411G</td>
<td>Safety harnesses</td>
<td>1425D, 1450D</td>
</tr>
<tr>
<td>1112</td>
<td>Sags (Def. 104)</td>
<td></td>
</tr>
<tr>
<td>1029</td>
<td>basis of computation</td>
<td>1251F(4)</td>
</tr>
<tr>
<td>1251F(4)</td>
<td>communication lines crossing contact conductors</td>
<td>1251L(2)</td>
</tr>
<tr>
<td>1251L(2)</td>
<td>conductors on same support</td>
<td></td>
</tr>
<tr>
<td>1251L(2)</td>
<td>different, on same supports</td>
<td></td>
</tr>
<tr>
<td>1251L(2)</td>
<td>grades B and C</td>
<td></td>
</tr>
<tr>
<td>1251L(2)</td>
<td>increased clearances for</td>
<td></td>
</tr>
<tr>
<td>1251L(2)</td>
<td>messenger</td>
<td>1251A(6)</td>
</tr>
<tr>
<td>1251A(6)</td>
<td>readjustment of</td>
<td></td>
</tr>
<tr>
<td>1251A(6)</td>
<td>service loads</td>
<td>1251A(6)</td>
</tr>
<tr>
<td>1251A(6)</td>
<td>scope of code</td>
<td></td>
</tr>
<tr>
<td>1251A(6)</td>
<td>on lines</td>
<td></td>
</tr>
<tr>
<td>1251A(6)</td>
<td>on lines</td>
<td></td>
</tr>
<tr>
<td>1251A(6)</td>
<td>Sealable equipment (Def. 103)</td>
<td>1029</td>
</tr>
<tr>
<td>1029</td>
<td>Sealing conduit hazardous locations</td>
<td></td>
</tr>
<tr>
<td>1141A</td>
<td>Sealing laterals</td>
<td></td>
</tr>
<tr>
<td>1291G</td>
<td>Secondaries</td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>grounding</td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>instrument transformers</td>
<td>1033C, 1161</td>
</tr>
<tr>
<td>1033C</td>
<td>selection of insulators</td>
<td></td>
</tr>
<tr>
<td>1033C</td>
<td>Separate, pole lines</td>
<td>1276</td>
</tr>
<tr>
<td>1276</td>
<td>grounds and ground conductors</td>
<td>1303, 1030, 1038</td>
</tr>
<tr>
<td>1303</td>
<td>separation of</td>
<td></td>
</tr>
<tr>
<td>1303</td>
<td>from any direction</td>
<td>1230E</td>
</tr>
<tr>
<td>1230E</td>
<td>separation of</td>
<td></td>
</tr>
<tr>
<td>1230E</td>
<td>cables underground</td>
<td></td>
</tr>
<tr>
<td>1230E</td>
<td>circuits and equipment on jointly used parts</td>
<td></td>
</tr>
<tr>
<td>1230E</td>
<td>communication and supply lines</td>
<td></td>
</tr>
<tr>
<td>1230E</td>
<td>communication equipment and supply equipment</td>
<td></td>
</tr>
<tr>
<td>1230E</td>
<td>conductors, and noncurrent-carrying parts</td>
<td></td>
</tr>
<tr>
<td>1230E</td>
<td>at supports</td>
<td></td>
</tr>
<tr>
<td>1230E</td>
<td>attached to bridges</td>
<td></td>
</tr>
<tr>
<td>1230E</td>
<td>attached to buildings</td>
<td></td>
</tr>
<tr>
<td>1230E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Electrical Code—Index

<table>
<thead>
<tr>
<th>Item</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street lighting equipment</td>
<td>12566D</td>
</tr>
<tr>
<td>are lamp disconnects, clearance from ground</td>
<td>12568(6)</td>
</tr>
<tr>
<td>clearance from pole</td>
<td>12568(2)</td>
</tr>
<tr>
<td>insulators in suspension ropes</td>
<td>12568(1)</td>
</tr>
<tr>
<td>horizontal clearance</td>
<td>12568(3)</td>
</tr>
<tr>
<td>suspension</td>
<td>12568(4)</td>
</tr>
<tr>
<td>Street openings, guarding of</td>
<td>14568B, 1456C</td>
</tr>
<tr>
<td>Street railways, construction</td>
<td>1256B</td>
</tr>
<tr>
<td>grade of conductors</td>
<td>1256B</td>
</tr>
<tr>
<td>span-wire insulators</td>
<td>1256C</td>
</tr>
<tr>
<td>third rails</td>
<td>1256C</td>
</tr>
<tr>
<td>tracks, separation from ducts and manholes</td>
<td>1256A, 1256C, 1256D</td>
</tr>
<tr>
<td>trolley, guarding under bridges</td>
<td>1254D(3), 1254E</td>
</tr>
<tr>
<td>included in transverse load</td>
<td>1254B(2)</td>
</tr>
<tr>
<td>minimum size</td>
<td>1256G</td>
</tr>
<tr>
<td>supports</td>
<td>1252B(2), 1252A</td>
</tr>
<tr>
<td>suspension of high voltage</td>
<td>1252B</td>
</tr>
<tr>
<td>Strength of communication cables</td>
<td>12511</td>
</tr>
<tr>
<td>conductor fastening</td>
<td>1251E</td>
</tr>
<tr>
<td>conductors</td>
<td>1251F</td>
</tr>
<tr>
<td>construction, minimum requirements</td>
<td>1000</td>
</tr>
<tr>
<td>foundations</td>
<td>1251B, 1251B</td>
</tr>
<tr>
<td>guards</td>
<td>1251B</td>
</tr>
<tr>
<td>messenger</td>
<td>1251B</td>
</tr>
<tr>
<td>paired communication conductors</td>
<td>1251F</td>
</tr>
<tr>
<td>paired conductors over supply lines</td>
<td>1251E(2)(a)</td>
</tr>
<tr>
<td>paired conductors over trolley conductors</td>
<td>1251E(2)(b)</td>
</tr>
<tr>
<td>pins</td>
<td>1251E(2)(c), 1251F(2)</td>
</tr>
<tr>
<td>poles</td>
<td>1251E</td>
</tr>
<tr>
<td>splices and taps</td>
<td>1251A</td>
</tr>
<tr>
<td>steel supporting structure</td>
<td>1251A(3)</td>
</tr>
<tr>
<td>supply cables</td>
<td>1251G</td>
</tr>
<tr>
<td>supports at angles</td>
<td>1251A(5)</td>
</tr>
<tr>
<td>trolley contact conductors</td>
<td>1251A(5)(b)</td>
</tr>
<tr>
<td>wood poles</td>
<td>1251F(6)</td>
</tr>
<tr>
<td>1251A(4)</td>
<td></td>
</tr>
<tr>
<td>Stressess, in conductors</td>
<td>1251F(4)</td>
</tr>
<tr>
<td>magnetic</td>
<td>1251F(4)</td>
</tr>
<tr>
<td>bonding wires</td>
<td>1161C</td>
</tr>
<tr>
<td>Structural steel</td>
<td>1422J, 1423J, 1435F, 1451G</td>
</tr>
<tr>
<td>Structure conflict (Def. 111)</td>
<td>12568(3)</td>
</tr>
<tr>
<td>Structures (see poles)</td>
<td>1060, 1161E</td>
</tr>
<tr>
<td>Substantial (Def. 115)</td>
<td>1060</td>
</tr>
<tr>
<td>Substations (see stations)</td>
<td>1110D</td>
</tr>
<tr>
<td>fences</td>
<td>1110D</td>
</tr>
<tr>
<td>Subway and tunnel operaion</td>
<td>1147</td>
</tr>
<tr>
<td>Suddenly moving parts, protection from</td>
<td>1122B, 1177B</td>
</tr>
<tr>
<td>Supervision of employees</td>
<td>1242D</td>
</tr>
<tr>
<td>strength of</td>
<td>1241A</td>
</tr>
<tr>
<td>Supply equipment (Def. 40)</td>
<td>1251G</td>
</tr>
<tr>
<td>separation from communication conductors</td>
<td>1090</td>
</tr>
<tr>
<td>Supply lines (Def. 76)</td>
<td>1256E</td>
</tr>
<tr>
<td>Approaching</td>
<td>1090</td>
</tr>
<tr>
<td>branch connections</td>
<td>1456D, 1456C</td>
</tr>
<tr>
<td>clearance above ground rails</td>
<td>12565B</td>
</tr>
<tr>
<td>climbing spaces for</td>
<td>12565</td>
</tr>
<tr>
<td>communication lines used in operation of supply lines</td>
<td>1256E</td>
</tr>
</tbody>
</table>
Trolley feeders. 12820B(1), 1285A, 1242B
Trouble reporting to chief operators. 1480H
Tunnel (see subway) working on. 1487
Twisted-pair conductors (see paired conductors). 1411B, 1422D, 1432P
Two workmen required. 1124G

U
Ultimate fiber streacees, wood poles. 1251A(4)(a)
Ultimate strength of steel. 1251A(3)(d)
wood poles. 1251A(4)(e)
Underground, cables (see cables), conductors (see conductors), conduit and ducts (see ducts). 1299
equipment, multiple connections of. 1299
lines. Sec. 129
lines, communication company operating rules. 1452
crossings under railways. 1452
operation. 1456
rivers. 1299C, 1297C
systems, communication, operation of. 1602
location of. 1299A
supply, operation of. 1456, 1457
Under voltage protection. 1139D
Insulator supports at railroad crossings. 1299C
Uniformity with existing construction. 1101B
Unqualified workmen. 1114C
Insulator supports. 1432B
Urban districts (Def. 119). 1102B
gate of conductors in. 1542
Use of approved material and construction methods. 1011
ground as part of circuit. 1542
of guy insulators. 1533B
Utilization equipment (Def. 120). 1020

V
Vapor-tight (Def. 121). 1020
Vault, transformer (Def. 114). 1020, 1114B, 1118, 1172
Vented (Def. 122). 1020
Ventilation of, battery rooms. 1141, 1141B, 1145, 1292D
machines. 1132D
motor compartment. 1132B
station. 1110B, 1114B, 1158
increase. 1022B
increase for suspension insulators. 1022B
increase for voltage. 1022B
Vertical conductor (Def. 123) (see also conductors). 1020, 1299D
arrangement of. 1299D(2)
separations for. 1299D
vertical loading. 1299D(2)
Vertical separations of conductors and noncurrent-carrying parts. 1234B

W
Waiver orders. 1018A
Working orders. 1018B
Warning signs (see signs). 1481C, 1485A(8), 1481H
warnings and barriers. 1482B
Watchman at manholes. 1469D, 1469C
Water pipe connections. 1063A, 1067
Water pipe grounds. 1063A
Waterproof (Def. 129). 1020
Water systems, grounding to. 1063A, 1097
Wattight (Def. 120). 1020
Weather conditions. 1110B, 1150, 1251
Weatherproof (Def. 127). 1020
cases. 1110B
Well eating grounding on. 1063A
Width of working space. 1125B
Wind pressure. 1251
Wire (see conductors). 1299B
Wires.
connections, lightning arrestors. 1125
handing. 1428D & 1
protection from falling. 1428D & 1
stringing of. 1428D & 1
vertical clearance, above ground and rails. 1232
Wiring
diagram for, equipment and lines, equipment in substations. 1411D
for illumination. 1166
lighting arresters, grounds, on switchboards, arrangement. 1189C, D, 1186A
Wood, molding, use of. 1299C, 1299D(2), 1299F
poles (see also poles). 1251A(6), 1252A, 1260A
allowable fiber stress. 1251A(6)
guy's. 1251C
longitudinal strength. 1251A(6)
minimum stress. 1251A(6)
spliced. 1251A(6)
top-drop. 1251A(6)
ultimate fiber stress. 1251A(6)
Working space. 1237
about equipment. 1118, 1154A, 1155A, B, 1151
about lightning arrestors. 1150B, 1151B
about switchboards. 1150B, 1151B
dimensions of. 1150B, 1151B
elevated parts. 1150B
extra from. 1152
headroom for. 1152
height. 1152

219
<table>
<thead>
<tr>
<th>Topic</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>in manholes</td>
<td>1284B(3)</td>
</tr>
<tr>
<td>in stations</td>
<td>1125</td>
</tr>
<tr>
<td>lateral (Def. 22)</td>
<td></td>
</tr>
<tr>
<td>Lightning arresters</td>
<td>1025, 1237</td>
</tr>
<tr>
<td>location</td>
<td>1136B, 1191B</td>
</tr>
<tr>
<td>obstruction of, by conductors</td>
<td>1237A</td>
</tr>
<tr>
<td>on poles</td>
<td>1237B, 1239A, 1239A, 1236A, 1D, 1125A</td>
</tr>
<tr>
<td>where required</td>
<td>1125A</td>
</tr>
<tr>
<td>width</td>
<td></td>
</tr>
<tr>
<td>Workmen’s request</td>
<td>1135B</td>
</tr>
<tr>
<td>Workmen, position</td>
<td>1433B</td>
</tr>
<tr>
<td>protection of, by disconnectors</td>
<td>1431I</td>
</tr>
<tr>
<td>requirements for two</td>
<td>1431D, 1432D, 1432F</td>
</tr>
<tr>
<td>unqualified</td>
<td>1411C</td>
</tr>
<tr>
<td>Work, on circuits</td>
<td>1185B</td>
</tr>
<tr>
<td>on live lines</td>
<td>1411B</td>
</tr>
</tbody>
</table>