DEPT. OF INDUSTRY, LABOR & HUMAN RELATIONS

METHOD I - ACCEPTABLE PRACTICE METHOD

The acceptable practice method outlined below can be used with minimum calculations for determining the acceptable level of insulation.

Problem: Using the acceptable practice method determine the level of insulation required for the 1,500 square foot dwelling in Phase 1.

Step 1: Determine the percentage window and door area.

Percent opening = \(\frac{\text{Window area + Door area}}{\text{Gross wall area + Box sill area}} \times 100\% \)

- Window area = 172.67 sq. ft.
- Door area = 37.82 sq. ft.
- Box sill area = 1,662.84 sq. ft.

\(\frac{210.49 \text{ sq. ft.}}{1,662.84 \text{ sq. ft.}} \times 100\% = 12.66\% \)

Step 2: Determine level of insulation required for the box sill and sidewalls for the given window and door area from Table A-1. (Phase 1)

Using 7/8 inch plywood siding the table shows that an R-11 batt with R-1.22 fiberboard will allow up to 12.83 window and door area.

Step 3: Determine the percentage window area for the exposed foundation wall.

Percent opening = \(\frac{\text{Window area}}{\text{Total exposed foundation area}} \times 100\% \)

- Window area = 172.67 sq. ft.
- Total exposed foundation area = 1,662.84 sq. ft. + 108.93 sq. ft. = 1,771.77 sq. ft.

\(\frac{172.67 \text{ sq. ft.}}{1,771.77 \text{ sq. ft.}} \times 100\% = 9.7\% \)

Step 4: Determine the amount of exposed foundation wall:

If there is 8" of wall exposed and the wall height is 8", then

Percent exposed = \(\frac{8"(12" \text{ per foot})}{8"} \times 100\% = 99.2\% \)

Step 5: Refer to Table A-2 to determine the level of insulation required for the foundation.

Using the requirements for less than 25% exposed foundation wall the table shows that an R-3.27 insulation can be used for up to 24.85 double glazed windows.

Step 6: Select the level of insulation required for the ceiling from Table A-3.
<table>
<thead>
<tr>
<th>Year</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
<th>Value 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>1.6</td>
<td>1.8</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>1987</td>
<td>2.2</td>
<td>2.3</td>
<td>1.2</td>
<td>1.2</td>
<td>1.0</td>
<td>1.6</td>
</tr>
<tr>
<td>1988</td>
<td>1.7</td>
<td>1.6</td>
<td>1.3</td>
<td>1.0</td>
<td>1.2</td>
<td>1.8</td>
</tr>
<tr>
<td>1989</td>
<td>1.8</td>
<td>1.5</td>
<td>1.1</td>
<td>1.2</td>
<td>1.0</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Legend:
- "K" = 1974 - 1980, 0.976 X "K" = 1974 - 1980, 0.976
- "K" = 1961 - 1980, 0.976 X "K" = 1961 - 1980, 0.976
- "K" = 1961 - 1980, 0.976 X "K" = 1961 - 1980, 0.976
- "K" = 1961 - 1980, 0.976 X "K" = 1961 - 1980, 0.976

Note: The following assumptions are made:
- The insulation type is cut in from the box side.

Table A-1

Exterior Foundation Insulation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-wall block</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Solid brick</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>3 1/2"</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2 1/2"</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Note: Based on Certain Assumptions Below The Foundation Will
TABLE A-3

Insulation Levels Required to Meet Ceiling U Values

<table>
<thead>
<tr>
<th>U₀ Value</th>
<th>Insulation</th>
<th>R-Value Required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inside Cavity</td>
</tr>
<tr>
<td>.033</td>
<td>Fiber glass batt</td>
<td>8.19 and 8.13</td>
</tr>
<tr>
<td></td>
<td>Fiber glass blown</td>
<td>12 in. (R-30)</td>
</tr>
<tr>
<td></td>
<td>Rock wool</td>
<td>9.7 in. (R-29)</td>
</tr>
<tr>
<td></td>
<td>Cellulose</td>
<td>8.4 in. (R-31)</td>
</tr>
<tr>
<td>.029</td>
<td>Fiber glass batt</td>
<td>8.38</td>
</tr>
<tr>
<td></td>
<td>Fiber glass blown</td>
<td>13.6 in. (R-36)</td>
</tr>
<tr>
<td></td>
<td>Rock wool</td>
<td>10.9 in. (R-33)</td>
</tr>
<tr>
<td></td>
<td>Cellulose</td>
<td>9.5 in. (R-35)</td>
</tr>
</tbody>
</table>

Note: The following assumptions are used:
1. Fiber glass blown = R-2.5 per inch
2. Rock wool = R-3.0 per inch
3. Cellulose = R-3.7 per inch

METHOD II - SYSTEM DESIGN METHOD

The system design method is the more complex method of determining the level of insulation required by the code. This procedure may be used when it becomes necessary to combine various materials to comply with the code. If the window area is increased and the same wall insulation is used, the wall section will not meet the requirements of Section 22.06 (A), but the system design method can be used by adding extra insulation elsewhere.

Problem: Using the system design method, increase the opening area to 15% and determine compliance by adding extra insulation to the walls and ceiling.

Step 1: Determine the inside and outside design temperatures from Tables 22.06-A and B.

- Inside temperature = 70°F
- Outside temperature = -20°F
- \(T = T_{inside} - T_{outside} = 70 - (-20) = 90°F \)

Note: Degree days may be used for system design instead of design temperatures.

- Zone 1, 9,000 degree days
- Zone 2, 8,000 degree days
- Zone 3, 7,000 degree days
- Zone 4, 7,000 degree days

Step 2: Using section 22.06, determine the insulation values for the exterior walls above grade and the roof/ceiling for Phase 1.

- Exposed exterior walls above grade; \(U₀ = .033 \)

Step 4: Fill in the worksheet to determine requirements for building enclosure heat loss.

Step 5: Select the levels of Insulation to be used and determine the U values for the ceiling, wall, floor, and foundation (shown in Figure A-1). Fill in the building enclosure worksheet.

Step 6: If the total heat loss determined through the system design method is within one percent or is less than the heat loss determined through the code requirements, the code has been satisfied.
DEPT. OF INDUSTRY, LABOR & HUMAN RELATIONS

APPENDIX C

INSULATION, EQUIPMENT AND CONDENSATION CONTROL

This appendix is a guide for the proper installation of insulation. The proceeding appendices indicated the required amounts and types of insulation necessary to provide the various thermal resistance values for the building envelope. In order to attain the resistance values specified, it is important that the insulation be properly installed. This appendix includes types of materials currently available and common application practices.

Condensation control should be provided in the form of vapor barriers and thermal breaks. Vapor barriers should be installed on the warm side (that heated in winter) of all walls, ceilings, and insulated floors. All metal window, skylight, and door frames should contain a thermal break.

Insulation is manufactured in many forms and types. The most commonly used materials in residential construction are batts and blankets, rigid insulation, reflective insulation, loose fill, and sprayed insulation. The following is a list of types of materials and the federal specifications governing their characteristics.

- Cork board ... FS HH-I-561
- Cellular glass ... FS HH-I-555
- Duct insulation ... FS HH-I-558b
- Expanded polystyrene insulation board .. FS HH-I-524
- Fiberboard ... FS L11-I-535 or ASTM C-225 Class C
- Insulation board (orethene) .. FS HH-I-530
- Insulation, thermal (perlite) .. FS HH-I-574
- Mineral fiber, pneumatic or poured ... FS HH-I-510M
- Mineral fiber, insulation blanket ... FS HH-I-512E
- Perlite .. FS HH-I-556a
- Perimeter insulation ... FS HH-I-55ka Type II
- FS HH-I-55ka Form A, Class 1 or 2
- Reflective .. FS HH-I-556
- Structural fiberboard insulation roof deck ... AAMA Spec. No. 1
- Cellulose, vegetable or wood fiber .. FS HH-I-5156-25
- Vermiculite ... FS HH-I-585
- Vermiculite, water repellent loose fill ... FRA 196-30
- Mineral fiber, roof insulation ... HS-I-524c

BAITS AND BLANKETS

These materials are usually identified on the package and on the vapor barrier facing with their “R” values. Under the federal specifications, there are 3 standard products identified as R-7, R-11, and R-19. These values are based on the insulation value of the mass. Some manufacturers offer other products such as R-8, R-13, and R-22. The specific thickness of insulation required for a specific “R” value may vary from one manufacturer to another due to differences in base materials and manufacturing processes.
General Guidelines
1. Install insulation so the vapor barrier faces the interior of the dwelling.
2. Vapor barriers should not be left exposed.
3. Insulate all voids of the building envelope including small spaces, gaps, around receptacles, pipes, etc.
4. Place insulation on the cold side of pipes and ducts (see Fig. 4). Insulation is not required for supply and return air ducts in heated basements and cellars.

Ceilings
There are a variety of methods for installing blanket insulation in ceilings.
1. Fastening from below (Fig. 1a).
2. Installing unlined (without a vapor barrier), friction-fit blankets (Fig. 2).
3. Inserting the insulation in from above when the ceiling finish material is in place (Fig. 1c).

Fasten flanges to the inside of ceiling joists as shown in Fig. 1b. Extend the insulation entirely across the top plate, keeping the blanket as close to the plate as possible. Fasten vapor barrier to plate. When eave vents are used, the insulation should not block air movement from eave to space above insulation (Fig. 1c).

Insert friction-fit blankets between ceiling joists (Fig. 7). Allow insulation to overlap the top plate of the exterior wall, but not enough to block air ventilation. The insulation should be in contact with the top of the plate to avoid heat loss and air infiltration beneath the insulation. The required vapor barrier is not shown.

Insert blankets into stud spaces. Working from the top down, space fasteners per manufacturers' recommendations; fitting flanges tightly against face of stud (Fig. 1). Cut blankets slightly over length and fasten the vapor barrier to the top and bottom plates.
Insert insulation behind (cold side in winter) pipes, ducts, and electrical boxes (Fig. 4).

Fill small spaces between rough framing and door and window heads, sills and sills with pieces of insulation (Fig. 5).

Insulate nonstandard-width stud or joint spaces by cutting the insulation and vapor barrier an inch or so wider than the space to be filled (Fig. 6a). Pull the vapor barrier on the cut side into the other stud, compressing the insulation behind it, and fasten through vapor barrier to stud face (Fig. 6b). Unfaced blankets are cut slightly oversize and fitted into place.

Masonry walls may be insulated by inserting insulation between furring strips spaced at 16 or 24 inches o.c. (Fig. 7a and 7b). It is recommended to apply the vapor barrier to the inside surface.

Floor and Crawl Spaces

Floors over crawl spaces (Fig. 8a) should be insulated either by insulating the foundation walls or by placing insulation on or between the joints. Insulation should be securely fastened. In all cases, the vapor barrier side of the insulation should face the floor above; that is, be adjacent to the warm side in winter. A vapor barrier should be used to cover the ground.

Dropped Soffits

Insulation of dropped soffits over kitchen cabinets, bath tubs, showers, or similar areas, need special attention when they are exposed to the attic. If the dropped soffit is framed before ceiling finish material is applied, a "board" (plywood, hardboard, gypsumboard, etc.) should be installed over the cavity to support insulation.
In multiple dwellings with back-to-back kitchens or baths, it is necessary to extend ceiling finish material over dropped soffits to the party wall to avoid loss of acoustical control and to provide adequate fire stops.

Rigid Insulation

Rigid insulation is available in various sizes and thicknesses made of polystyrene, polyurethane, cork, cellular glass, mineral fiber (glass or rock wool), perlite, wood fiberboard, etc. They are used as an insulation for masonry construction, as perimeter insulations around concrete slabs, as exterior sheathing under the weather barrier, as rigid insulations on top of roof decks, and other applications. Rigid insulations, such as polystyrene and polyurethane, are vapor barriers and, in most applications, will not require the installation of a separate barrier.

Installation Procedures

Masonry walls: Rigid insulations are applied to either face of a masonry wall (Fig. 9a and 9b) or are used as a cavity insulation between two wythes of masonry (Fig. 9c). When applied to the face of masonry walls, they are generally installed with adhesive and/or mechanical fasteners. The manufacturer's recommendation should be followed.

Frame Construction: When rigid insulation is used with frame construction (Fig. 10), it is usually applied as sheathing to the outside of the framing, and mechanically attached with nails to wood studs or to metal studs with screws or clips or other approved methods.
Roof Insulation: Roof insulation boards are usually installed with an approved adhesive, but asphalt, or may be nailed to the roof sheathing. The manufacturer's instructions should be followed.

Slab-on-Grade: Rigid insulation is frequently used as insulation around the perimeter of concrete slab-on-grade (Fig. 11b, c, d) and also may be used on the inside of foundation walls adjacent to heated crawl spaces, basements or valleys (Fig. 11a). Installation is usually accomplished with adhesive and/or mechanical fasteners. Perimeter insulation should be installed against the foundation wall or extended into the interior of the building to a distance equal to the design frost line (Fig. 11b, c and d). Where the slab bears on the foundation ledge, the insulation should be a load-bearing type.

Fig. 11a
Fig. 11b

Fig. 11c
Fig. 11d

INSULATED CONCRETE BLOCK

Concrete block manufacturers are currently producing several types of multi-celled block with improved insulation values. The thermal resistance of the block will vary depending upon the types of insulation used and the configuration of the cells. An example of a typical multi-celled block is shown below.

LOOSE FILL INSULATION

Materials of this type are those made from mineral fibers (rock or glass), cellulose materials (wood fibers or shredded paper), or other manufactured products that can easily be poured.

BLOW ATTIC INSULATION

There are several factors pertaining to blown attic insulation that can cause differences in its installed thermal resistance value (R). For a given manufacturer's insulation, the installed thermal resistance (R) value depends on thickness and weight of insulating material applied per square foot. Federal specification HO-1-T935A for insulation requires that each bag of insulation be labeled to show the minimum thickness, the maximum net coverage, and the minimum weight of that particular insulation material required per square foot to produce resistance values of R-30, 22, 19, and 11. A bag label example for blown insulation is shown in Fig. 11.

The number of bags of blown insulation required to provide a given R-value to insulate an attic of a given size may be calculated from data provided by the manufacturer. If only the thickness of blown attic insulation is specified, and the density or number of bags is not, the desired or assumed thermal resistance (R) value may not be achieved. The important characteristic is weight per square foot. Thickness is the minimum thickness, not the average thickness experienced in the field.
ADEQUATE BAFFLING OF THE VENT OPENING OR INSULATION BLOCKING SHOULD BE PROVIDED SO AS TO DEFLECT THE INCOMING AIR ABOVE THE SURFACE OF THE INSTALLED BLOOM OR Poured INSULATION. Baffles should be made of durable material securely fastened. Baffles should be in place at the time of framing inspection.

Three blow insulations that provide R-19 are:

<table>
<thead>
<tr>
<th>Material</th>
<th>Minimum Thickness</th>
<th>Maximum Net Coverage/Bag</th>
<th>Bags/1000 Sq. Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose</td>
<td>5-1/8"</td>
<td>59 sq. ft. (60 lb. bag)</td>
<td>17</td>
</tr>
<tr>
<td>Glass fiber</td>
<td>8-3/4"</td>
<td>51 sq. ft. (25 lb. bag)</td>
<td>20</td>
</tr>
<tr>
<td>Rock wool</td>
<td>6-1/2"</td>
<td>26 sq. ft. (27 lb. bag)</td>
<td>38</td>
</tr>
</tbody>
</table>

Bag label Example: The manufacturer recommends these maximum coverages at these minimum thicknesses to provide the levels of installed insulation resistance (R) values shown:

- Based on 25-pound nominal weight bags

<table>
<thead>
<tr>
<th>R-Value</th>
<th>Minimum Thickness</th>
<th>Minimum Weight per Sq. Ft.</th>
<th>Bags per 1000 Sq. Ft.</th>
<th>Maximum Net Coverage per Bag</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-30</td>
<td>12-3/4" thick</td>
<td>0.768 lbs. per sq. ft.</td>
<td>30</td>
<td>33 sq. ft.</td>
</tr>
<tr>
<td></td>
<td>10" thick</td>
<td>0.558 lbs. per sq. ft.</td>
<td>25</td>
<td>45 sq. ft.</td>
</tr>
<tr>
<td>8-19</td>
<td>8-3/4" thick</td>
<td>0.489 lbs. per sq. ft.</td>
<td>20</td>
<td>51 sq. ft.</td>
</tr>
<tr>
<td></td>
<td>6" thick</td>
<td>0.379 lbs. per sq. ft.</td>
<td>11</td>
<td>90 sq. ft.</td>
</tr>
</tbody>
</table>

Contents of this bag should not cover more than:

- R-Value: 12
- Minimum Thickness: 12-3/4"
- Maximum Weight per Sq. Ft.: 0.768 lbs.
- Bags per 1000 Sq. Ft.: 30
- Maximum Net Coverage per Bag: 33 sq. ft.

REFLECTIVE INSULATION

Reflective insulation is composed of aluminum foil in one or more layers either plain or laminated to one or both sides of Kraft paper for structural strength. The insulation value for reflective air spaces, which this type of insulation provides, varies widely depending on the direction of heat flow. They are much more efficient when the heat flow is down. Reflective insulations which comply with the requirements when used in a floor, may not be satisfactory in ceilings or walls, where the heat flow is upward and horizontal, respectively. Reflective insulations are effective in controlling radiant heat energy when installed so that they face an air space. Insulation should be installed in such a manner that it is continuous, without holes or tears.

SPRAYED INSULATION

There are several types of insulation which are sprayed against the surface of the building materials or in cavities. Some of these are cellulose with binder, mineral wool with binder, and cellulose foams. They may be sprayed directly on concrete, masonry, wood, plastic, or metal panels or may be sprayed between the framing members. Manufacturer's recommended instructions should be followed.

To determine the proper thickness is installed, either refer to the plans and specifications, or request a certification from the supplier that the insulation installed provides the required "R" value.

TYPICAL INSULATION THICKNESSES AND VALUES

<table>
<thead>
<tr>
<th>Insulation</th>
<th>Approximate R-Value</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber glass</td>
<td>11</td>
<td>3-1/2"</td>
</tr>
<tr>
<td>Fiber glass</td>
<td>13</td>
<td>3-5/8"</td>
</tr>
<tr>
<td>Fiber glass</td>
<td>19</td>
<td>6"</td>
</tr>
<tr>
<td>Fiber glass</td>
<td>30</td>
<td>8"</td>
</tr>
<tr>
<td>Fiber glass</td>
<td>38</td>
<td>12"</td>
</tr>
<tr>
<td>Extruded Polystyrene Foam</td>
<td>1.6</td>
<td>1"</td>
</tr>
<tr>
<td>Extruded Polystyrene Foam</td>
<td>10.6</td>
<td>2"</td>
</tr>
</tbody>
</table>

VAPOR BARRIERS

Vapor barriers are used in conjunction with insulation to decrease the chance of moisture condensation inside the building insulation. Vapor barriers are placed on the side of the wall, ceiling, or floor that is warm in winter; for equal vapor pressures, moisture vapor penetration through holes or tears in the insulation vapor barrier is proportional to the size of the opening. Holes or tears should be repaired. A snug fit of blanket flanges against the framing is necessary to prevent moisture from bypassing the vapor barrier.

EQUIPMENT

The installation of the heating system can contribute to inefficiencies. A furnace which is oversized by a factor of 2 will require R to 105 more fuel than a furnace of correct size. An installation that has uninsulated ducts passing through an unheated crawl or attic space will lose about 0.5 ft. per hour per square foot of duct per degree of temperature differential between duct air and outside air. This amount is 40% of a furnace output under mild conditions. Underized ducting will reduce the amount of circulating air and will affect the capacity of the furnace, but will normally have little effect upon its efficiency. Atmospheric combustion equipment that draws its combustion and stack-dilution air from the heated space will require an 85 more fuel in a season to heat the required makeup air than sealed combustion equipment. Stack heat recovery devices can recover from about 42 at 500 F to 82 at 800 F.

Register, July, 1978, No. 271
Energy Conservation
Effect of Blowing Limitation on Equipment

Using the example on system design illustrated in Appendix A, an analysis was made to see what impact or problem the proposal for limiting the size of equipment to 15% above the design losses would have.

Example:

Total construction loss 27,760 Btu/hour

One air change per hour:

Inside volume = 12,188 cu. ft.
Q = (12,188)(195)(0.65) = 19,764 Btu/hour

Total infiltration loss 19,764 Btu/hour

Maximum furnace size:

67,504 Btu/hour + 19,764 (.15) Btu/hour = 54,430 Btu/hour

Combustion Air for Fireplaces

It is recommended that combustion air from the exterior be provided for all fireplaces. Masonry fireplaces can be made more energy efficient with combustion air terminals in the fireplace. The opening of the fireplace should be equipped with a door and the combustion air duct with a damper and a lever to minimize air leakage during periods of nonuse.

Condensation Control

Air Infiltration

The department will accept infiltration losses determined by the air crack method or an overall value of 1/2 air change per hour.

The department will accept the use of engineered top-side moisture vent systems.

Relative Humidity

Winter: During the winter it is desirable to have humidity in the air in order to prevent the moisture from becoming dry, furniture from cracking, etc. However, from an energy standpoint, it is desirable to keep the relative humidity low, the trade-off is at about 30%.

Summer: During the summer it is desirable to reduce the level of relative humidity in the building in relationship to the outside relative humidity. The relative humidity should be kept as high as possible in order to conserve energy, but low enough for comfort. The relative humidity should be kept above 55%, but less than 60%.