Chapter Comm 22

ENERGY CONSERVATION

Subchapter I — Scope and Application
Comm 22.01 Scope.
Comm 22.02 Application.

Subchapter II — Materials and Equipment
Comm 22.03 Materials, equipment and systems installation.
Comm 22.04 Protection of insulation.
Comm 22.05 Fenestration product rating certification and labeling.

Subchapter III — Definitions
Comm 22.06 Definitions.

Subchapter IV — Design Criteria
Comm 22.07 Indoor and outdoor temperatures.
Comm 22.08 Ventilation and moisture control.

Subchapter V — Heating and Air Conditioning Equipment and Systems
Comm 22.09 Scope.
Comm 22.10 Calculating heating and cooling loads.
Comm 22.11 Calculation procedures.
Comm 22.12 Selection of equipment.
Comm 22.13 Supplementary heater for heat pumps.
Comm 22.14 Mechanical ventilation.
Comm 22.15 Temperature control.
Comm 22.16 Humidity control.
Comm 22.17 Duct system insulation.
Comm 22.18 Duct and plenum sealing.
Comm 22.19 Pipe insulation.

Subchapter VI — Dwelling Envelope Design
Comm 22.20 General.
Comm 22.21 Envelope requirements.
Comm 22.22 Vapor retarders.
Comm 22.23 Walls.
Comm 22.24 Roof and ceiling.
Comm 22.25 Floors over unheated spaces.
Comm 22.26 Slab-on-grade floors.
Comm 22.27 Crawl space walls.
Comm 22.28 Basement walls.
Comm 22.29 Masonry veneer.
Comm 22.30 Air leakage.
Comm 22.31 Calculations.
Comm 22.32 Recessed lighting fixtures.

Subchapter VII — Design By Systems Analysis and Design of Dwellings Utilizing Renewable Energy Sources
Comm 22.33 General.
Comm 22.33.5 Definitions.
Comm 22.34 Energy analysis.
Comm 22.35 Input values.
Comm 22.36 Design.
Comm 22.37 Analysis procedure.
Comm 22.38 Calculation procedure.
Comm 22.39 Use of approved calculation tool.
Comm 22.40 Documentation.
Comm 22.41 Renewable energy source analysis.
Comm 22.42 Documentation.

Subchapter I — Scope and Application
Comm 22.01 Scope. This chapter applies to all one- and 2-family dwellings covered by this code.

Comm 22.02 Application. (1) This chapter is not intended to conflict with any safety or health requirements. Where such conflict occurs, the safety and health requirements shall govern.

(2) This chapter allows the designer the option of using subch. V and VI or VII to demonstrate compliance with equipment and thermal performance requirements. The designer shall identify on the plan submittal form what method or subchapter is being used, and indicate the design criteria and how it is being applied. Requirements of all other subchapters apply regardless of the design criteria.

Note: The UDC Energy Worksheet specifies the insulation requirements to apply to the dwelling envelope. A copy of the worksheet is in the appendix. Other code requirements apply to material and equipment identification, sealing of the building envelope, the heating and cooling system including ducts, and the hot water system. Copies of worksheets may be obtained from the Department of Commerce, Safety and Buildings Division P.O. Box 2509 Madison, WI 53701.

(3) Portions of garages, porches and decks without living space directly above them are excluded from consideration under par. (a).

Notes: Chapter IId 22 was renumbered to be chapter II HR 22, Register, February, 1985, No. 350, eff. 3–1–85. Chapter II HR 22 was repealed and reenacted to be chapter Comm 22, Register, January, 1999, No. 517, eff. 2–1–99.

History: Cr. Register, January, 1999, No. 517, eff. 2–1–99.
1. Default values as approved by the department with no extrapolations or interpolations.

2. Laboratory or field test measurements specified under par. (a).

3. The material approval process specified in s. Comm 20.18.

(3) General installation. (a) Materials, equipment and systems shall be identified in a manner that will allow a determination of their compliance with the applicable provisions of this chapter.

(b) All insulation materials, caulking and weatherstripping, fenestration assemblies, mechanical equipment and systems components, and water-heating equipment and system components shall be installed in accordance with the manufacturer’s installation instructions.

(c) Manufacturer’s installation instructions shall be available on the job site at the time of inspection.

(4) Dwelling envelope insulation. (a) Except as provided in par. (b), a thermal resistance identification mark shall be applied by the manufacturer to each piece of dwelling envelope insulation 12 inches or greater in width.

(b) Insulation without a thermal resistance identification mark may be used if the insulation installer provides a signed and dated certification for the insulation installed in each element of the building envelope, listing the type of insulation, the manufacturer and the R-value. For blown-in or sprayed insulation, the installer shall also provide the initial installed thickness, the calculated settled thickness, the coverage area and the number of bags installed. The installer shall post the certification in a readily accessible conspicuous place on the job site.

(5) Insulation installation. (a) Roof and ceiling, floor and wall cavity batt or board insulation shall be installed in a manner which will permit inspection of the manufacturer’s R-value identification mark.

(b) The thickness of roof and ceiling insulation that is either blown in or sprayed shall be identified by thickness markings that are labeled in inches installed at least one for every 300 square feet through the attic space. The markers shall be affixed to trusses or joists marking the minimum initial installed thickness and minimum settled thickness with numbers a minimum of one inch in height. Each marker shall face the attic access. The thickness of installed insulation shall meet or exceed the minimum initial installed thickness shown by the marker.

History: Cr. Register, January, 1999, No. 517, eff. 2–1–99; CR 02-077: nm. (1) and (2) to be (4) and (5), cr. (1) to (3) Register May 2003 No. 569, eff. 8–1–03.

Comm 22.04 Protection of insulation. (1) Blanket insulation. Except in the box sill, insulating blankets or batts shall be held in place with a covering or other means of mechanical or adhesive fastening.

Note: Acceptable covering or fastening for interior or warm-side applications includes drywall, vapor retarder material, foil or Kraft paper backing or other means of holding the blankets in place. Air barrier material may be used for cold-side support.

(2) Foam plastic insulation. Exterior foam plastic insulation shall be protected from physical damage and damage from ultraviolet light.

Note: For interior applications, a thermal barrier may be required under s. Comm 21.11.

History: Cr. Register, March, 2001, No. 543, eff. 4–1–01.

Comm 22.05 Fenestration product rating certification and labeling. (1) Certified products. Except as provided in sub. (2), fenestration product rating, certification and labeling, U-values of windows, doors and skylights shall be determined in accordance with the National Fenestration Rating Council standard 100, Procedures for Determining Fenestration Product Thermal Properties, by an accredited, independent laboratory. Fenestration products shall be labeled and certified by the manufacturer. Such certified and labeled values shall be accepted for purposes of determining compliance with the dwelling envelope requirements of this code.

(2) Default values. When a manufacturer has not determined product U-value in accordance with NFRC 100 for a particular product line, compliance with the dwelling envelope requirements of the code shall be determined by assigning such products a default U-value in accordance with Tables 22.05–1 and 22.05–2. Product features must be verifiable for the product to qualify for the default value associated with those features. Where the existence of a particular feature cannot be determined with reasonable certainty, the product shall not receive credit for that feature. Where a composite of materials of two different product types is used, the product shall be assigned the higher U-value.
TABLE 22.05-1
U-VALUE DEFAULT TABLE FOR WINDOWS, GLAZED DOORS AND SKYLIGHTS

<table>
<thead>
<tr>
<th>METAL WITHOUT THERMAL BREAK</th>
<th>Single Glazed</th>
<th>Double Glazed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operable</td>
<td>1.27</td>
<td>0.87</td>
</tr>
<tr>
<td>Fixed</td>
<td>1.13</td>
<td>0.69</td>
</tr>
<tr>
<td>Garden Window</td>
<td>2.60</td>
<td>1.81</td>
</tr>
<tr>
<td>Curtain Wall</td>
<td>1.22</td>
<td>0.79</td>
</tr>
<tr>
<td>Door</td>
<td>1.26</td>
<td>0.80</td>
</tr>
<tr>
<td>Skylight</td>
<td>1.98</td>
<td>1.31</td>
</tr>
<tr>
<td>Site Assembled Skylight</td>
<td>1.36</td>
<td>0.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>METAL WITH THERMAL BREAK</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operable</td>
<td>1.08</td>
<td>0.65</td>
</tr>
<tr>
<td>Fixed</td>
<td>1.07</td>
<td>0.63</td>
</tr>
<tr>
<td>Curtain Wall</td>
<td>1.11</td>
<td>0.68</td>
</tr>
<tr>
<td>Door</td>
<td>1.10</td>
<td>0.66</td>
</tr>
<tr>
<td>Skylight</td>
<td>1.89</td>
<td>1.11</td>
</tr>
<tr>
<td>Site Assembled Skylight</td>
<td>1.25</td>
<td>0.70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REINFORCED VINYL OR METAL-CLAD WOOD</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operable</td>
<td>0.90</td>
<td>0.57</td>
</tr>
<tr>
<td>Fixed</td>
<td>0.98</td>
<td>0.56</td>
</tr>
<tr>
<td>Door</td>
<td>0.99</td>
<td>0.57</td>
</tr>
<tr>
<td>Skylight</td>
<td>1.75</td>
<td>1.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WOOD/VINYL/FIBERGLASS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operable</td>
<td>0.89</td>
<td>0.55</td>
</tr>
<tr>
<td>Fixed</td>
<td>0.98</td>
<td>0.56</td>
</tr>
<tr>
<td>Garden Window</td>
<td>2.31</td>
<td>1.61</td>
</tr>
<tr>
<td>Door</td>
<td>0.98</td>
<td>0.56</td>
</tr>
<tr>
<td>Skylight</td>
<td>1.47</td>
<td>0.84</td>
</tr>
</tbody>
</table>

* Glass block assemblies shall have a default U-value of 0.60.

TABLE 22.05-2
U-VALUE DEFAULT TABLE FOR NON-GLAZED DOORS

<table>
<thead>
<tr>
<th>STEEL DOORS (13/4 inches thick)</th>
<th>With Foam Core</th>
<th>Without Foam Core</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.35</td>
<td>0.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WOOD DOORS (13/4 inches thick)</th>
<th>Without Storm Door</th>
<th>With Storm Door</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel with 7/16” panels</td>
<td>0.54</td>
<td>0.36</td>
</tr>
<tr>
<td>Hollowcore flush</td>
<td>0.46</td>
<td>0.32</td>
</tr>
<tr>
<td>Panel with 11/8” panels</td>
<td>0.39</td>
<td>0.28</td>
</tr>
<tr>
<td>Solid core flush</td>
<td>0.40</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Subchapter III — Definitions

Comm 22.06 Definitions. In ch. Comm 22:

(1) “Accessible”, as applied to equipment, means admitting close approach to equipment not guarded by locked doors, elevation or other effective means.

Note: See "Readily accessible".

(2) “Air conditioning” means the process of treating air to control simultaneously its temperature, humidity, cleanliness, and distribution to meet the requirements of the conditioned space.

(3) “Automatic” means self-acting, operating by its own mechanism when actuated by some impersonal influence, such as a change in current strength, pressure, temperature or mechanical configuration.

(4) “Basement wall” is the opaque portion of a wall that encloses one side of a basement and is partially or totally below grade.

(5) “Conditioned space” means space within the dwelling envelope which is provided with heated or cooled air or surfaces to provide a heated space or a cooled space.

(6) “Cooled space” means a space directly or indirectly supplied with mechanical cooling to maintain air temperature within the space of 85°F or less at design conditions.

(7) “Crawl space wall” means the opaque portion of a wall which encloses a crawl space and is partially or totally below grade.

(8) “Deadband” means the range of values within which an input variable can be varied without initiating any noticeable change in the output variable.

(9) “Dwelling envelope” means the elements of a dwelling with enclosed conditioned space through which thermal energy may be transferred to or from the exterior.

(10) “Electrically heated” means provided with permanently installed electrical space heating equipment which has an input capacity of 3 kilowatts or more to meet all or part of the space heating requirements. Electrical space heating equipment does not include ground source heat pumps. Electrical space heating does not include electrical resistance components utilized to provide back-up or stand-by space heating for ground source heat pump systems where more than 50 percent of the design heating load will be satisfied by the ground source heat pump system.

(11) “Energy” means the capacity for doing work, taking a number of forms which may be transformed from one form into another, such as thermal heat, mechanical work, electrical and chemical in customary units, measured in kilowatt–hours (kWh) or British thermal units (Btu).

Note: See "New energy".

(12) “Energy, Recovered”. See "Recovered energy".

(13) “F-value” means the rate of heat loss through a slab per foot of perimeter measured in Btu/ft • h • °F.

(15) “Gross exterior wall area” means the normal projection of the dwelling envelope wall area bounding interior space which is conditioned by an energy-using system including opaque wall, window and door area. The gross area of exterior walls consists of all opaque wall areas, including between floor spandrels, box sills, window area including sash, and door areas when they are exposed to outdoor air or unconditioned spaces and enclosed heated or mechanically cooled space, including interstitial area between 2 such spaces. The gross exterior wall area includes the total basement wall area if it is less than 50% below grade. The gross exterior wall area includes non-opaque areas such as windows and doors of all basement walls. Any skylight shafts that are 12 inches or more in depth, measured from the ceiling plane to the roof deck, shall be considered in the gross area of exterior walls and are excluded from consideration in the roof assembly.

(16) “Gross floor area” means the sum of areas of all floors of the structure, including basements, cellars, and intermediate floored tiers measured from the exterior faces of exterior walls or from the center line of interior walls, excluding covered walkways, open rooftops or over areas, porches, pipe trenches, exterior terraces or steps, chimneys, roof overhangs and similar features.
(17) "Heat" means energy that is transferred by virtue of a temperature difference or a change in state of a material.

(18) "Heated slab" means slab-on-grade construction in which the heating elements or hot air distribution system is in contact with or placed within the slab or the subgrade.

(19) "Heated space" means any enclosed space provided with a direct or indirect supply of heat to maintain the temperature of the space to at least 50°F at design conditions.

(20) "Humidistat" means a regulating device, actuated by changes in humidity, used for automatic control of relative humidity.

(21) "HVAC" means heating, ventilating and air conditioning.

(22) "HVAC system" means the equipment, distribution network, and terminals that provide either collectively or individually the processes of heating, ventilating, or air conditioning to a building.

(23) "Infiltration" means the uncontrolled inward air leakage through cracks and interstices in any dwelling element and around windows and doors of a dwelling caused by the pressure effects of wind, and the effect of differences in the indoor and outdoor air density.

(24) "Inherently protected type IC" means tested and listed by an independent testing laboratory as being suitable for installation in a cavity where the fixture may be in direct contact with thermal insulation or combustible materials and the fixture construction is such that, even without a thermal protector, the fixture cannot be overamped or mislapped.

(25) "Manual" means capable of being operated by personal intervention.

Note: See "Automatic".

(26) "New energy" means energy other than recovered energy, utilized for the purpose of heating or cooling.

Note: See "Energy".

(27) "Opaque areas" means all exposed areas of a dwelling envelope which enclose conditioned space except openings for windows, skylights, doors and dwelling service systems.

(28) "Readily accessible" means capable of being reached quickly for operation, renewal or inspections, without requiring a person to climb over or remove obstacles or to resort to portable ladders or access equipment.

Note: See "Accessible".

(29) "Recovered energy" means energy utilized which would otherwise be wasted and would not contribute to a desired end use, from an energy utilization system.

(30) "Renewable energy sources" means sources of energy, excluding minerals, derived from incoming solar radiation, including natural daylighting and photosynthetic processes; from phenomena resulting therefrom, including wind, waves and tides, lake or pond thermal differences and from the internal heat of the earth, including nocturnal thermal exchanges.

(31) "Roof assembly" means all components of the roof and ceiling envelope through which heat flows, thus creating a building transmission heat loss or gain, where such assembly is exposed to outdoor air and encloses a heated or mechanically cooled space. The gross area of a roof assembly consists of the total interior surface of all roof or ceiling components, including opaque surfaces, dormer and bay window roofs, trenched ceilings, overhead portions of an interior stairway to an unconditioned attic, doors and hatches, glassing and skylights exposed to conditioned space, that are horizontal or sloped at an angle less than 60 degrees from the horizontal. A roof assembly, or portions thereof, having a slope of 60 degrees or greater from horizontal shall be considered in the gross area of exterior walls and shall be excluded from consideration in the roof assembly. Any skylight shaft walls less than 12 inches in depth, as measured from the ceiling plane to the roof deck, shall be considered in the roof assembly and are excluded from consideration in the gross area of exterior walls.

(32) "Sequence" means a consecutive series of operations.

(33) "Service system" means all energy-using systems in a dwelling that are operated to provide services for the occupants or processes housed therein, including HVAC, service water heating, illumination, transportation, cooking or food preparation, laundering and similar functions.

(34) "Service water heating" means a supply of hot water for purposes other than comfort heating.

(35) "Service water heating demand" means the maximum design rate of energy withdrawal from a service water heating system in a designated period of time; usually an hour or a day.

(36) "Slab-on-grade floor insulation" means insulation around the perimeter of the floor slab or its supporting foundation.

(37) "Solar energy source" means a source of natural daylighting and of thermal, chemical or electrical energy derived directly from conversion of incident solar radiation.

(38) "System" means a combination of central or terminal equipment and their components, controls, accessories, interconnecting means, and terminal devices by which energy is transformed so as to perform a specific function such as, HVAC, service water heating or illumination.

(39) "Thermal conductance" means the time rate of heat flow through a body, frequently per unit area, from one of its bounding surfaces to the other, for a unit temperature difference between the two surfaces, under steady state conditions. It is expressed as Btu/ht² °F.

(40) "Thermal resistance" or "R" means a measure of the ability to retard the flow of heat. The R-value is the reciprocal of thermal transmittance or U-value expressed as R = 1/U.

Note: The higher the R-value of a material, the more difficult it is for heat to be transmitted through the material.

(41) "Thermal resistance overall" or "R₀" means the reciprocal of overall thermal conductance expressed as Btu/ht² °F. The overall thermal resistance of the gross area or individual component of the exterior dwelling envelope such as, roof and ceiling, exterior walls, floors, crawl space walls, foundation walls, windows, skylights, doors, and opaque walls, includes the weighted R-values of the component assemblies, including air-film, insulation, drywall, framing, and glazing.

(42) "Thermal transmittance" or "U" means the time rate of heat flow through a body or assembly which is located in between 2 different environments, expressed in Btu/ht² °F. The U-value applies to combinations of different materials used in series along the heat flow path and also to single materials that comprise a dwelling section, including cavity air spaces and air films on both sides of a dwelling element.

Note: The lower the U-value of a material, the more difficult it is for heat to be transmitted through the material.

(43) "Thermal transmittance overall" or "U₀" means the overall, average heat transmission of a gross area of the exterior dwelling envelope expressed as Btu/ht² °F. The U₀-value applies to the combined effect of the time rate of heat flow through various paths, such as windows, doors and opaque construction areas, comprising the gross area of the exterior dwelling components, such as walls, floors or roof and ceilings.

(44) "Thermally protected type IC" means tested and listed by an independent testing laboratory as being suitable for installation in a cavity where thermal insulation will be in direct contact with the fixture.

(45) "Thermostats" means an automatic control device actuated by temperature and designed to be responsive to temperature.
(46) "Ventilation" means the process of supplying or removing air by natural or mechanical means to or from any space. Such air may or may not have been conditioned.

(47) "Zone" means a space or group of spaces within a dwelling with heating or cooling requirements sufficiently similar so that comfort conditions can be maintained throughout by a single controlling device.

History: Cr. Register, January 1999, No. 517, eff. 2–1–99; CR 02–077; r. (14), am. (15) and (31) Register May 2003 No. 569, eff. 8–1–03; CR 06–071; am. (10) Register December 2006 No. 612, eff. 4–1–07.

Subchapter IV — Design Criteria

Comm 22.07 Indoor and outdoor temperatures.

(1) GENERAL. The indoor temperatures listed in sub. (2) and the outdoor temperatures listed in Table 22.07 shall be used to determine the total dwelling heat loss and to select the size of the heating equipment.

(2) INDOOR DESIGN TEMPERATURES. Unheated, non-habitable basement areas shall use a design temperature of less than 50°F. All other areas of a dwelling shall use a design temperature of 70°F.

| TABLE 22.07 |
| OUTDOOR DESIGN CONDITIONS BASED ON FIGURE 22.07 |
Zone 1	25°F below zero F
Zone 2	20°F below zero F
Zone 3	15°F below zero F
Zone 4	10°F below zero F

Note: See Figure 22.07 for zone boundaries.

History: Cr. Register, January 1999, No. 517, eff. 2–1–99; am. Table 22.07–1, Register, March 2001, No. 543, eff. 4–1–01; CR 02–077; r. and recr. Register May 2003 No. 569, eff. 8–1–03.
Comm 22.17 WISCONSIN ADMINISTRATIVE CODE

(d) Exhaust air ducts.
History: Cr. Register, January, 1990, No. 517, eff. 2-1-99; am. (1), Register, March, 2001, No. 543, eff. 4-1-01.

Comm 22.18 Duct and plenum sealing. (1) Sections of supply and return ducts not located entirely within the conditioned space and the unconditioned side of enclosed stud bays or joist cavities or spaces used to transport air shall be sealed.
(2) Sealing shall be accomplished using welds, gaskets, mastics, mastic-plus-embedded-fabric systems or tapes installed in accordance with the manufacturer’s instructions.
(3) Insulation that provides a continuous air barrier may be used in lieu of sealing metal ducts.
(4) Tapes and mastics used with rigid fibrous glass ducts shall be listed and labeled as complying with UL 181A.
(5) Tapes and mastics used with flexible air ducts shall be listed and labeled as complying with UL 181B.
(6) Tapes with rubber-based adhesives may not be used.
Note: Standard duct tape has a rubber-based adhesive and does not comply with the requirements under this section.
History: Cr. Register, March, 2001, No. 543, eff. 4-1-01.

Comm 22.19 Pipe insulation. (1) Except as provided in sub. (2), all heating pipes in unheated spaces and all cooling pipes in uncooled spaces shall be insulated with material providing a minimum thermal resistivity of R-4 as measured on a flat surface in accordance with ASTM standard C 335 at a mean temperature of 75 °F.
(2) Piping insulation is not required in any of the following cases:
(a) Pipes installed within heating and air conditioning equipment, installed in conditioned spaces.
(b) Piping at fluid temperatures between 55°F and 120°F when not required for energy conservation purposes.

Comm 22.20 General. (1) APPLICATION. The dwelling envelope of all 1- and 2-family dwellings shall comply with this subchapter, unless the requirements of system analysis design of subch. VII are met.
Note: See appendix for a copy of the JDC Energy Worksheet used to show compliance with the envelope insulation requirements of ss. Comm 22.21 to 22.26. Copies of the worksheets may be obtained from the Department of Commerce, Safety and Buildings Division, P.O. Box 2509 Madison, WI 53701. Other forms or software may be used when approved by the department. WBCheck software may be used to show compliance and is available from the Safety and Buildings page on the Department of Commerce Website www.commerce.state.wi.us.

(2) P Spaini ti on for Additions. (a) As an alternative to demonstrating compliance with ss. Comm 22.23 to 22.28, dwelling additions with a conditioned floor area less than 500 square feet shall meet the prescriptive envelope component criteria in Table 22.20.
(b) The U-factor of each individual fenestration product shall be used to calculate an area-weighted average fenestration product U-factor for the addition, which may not exceed the listed values in Table 22.20.
(c) The total area of fenestration products may not exceed 25 percent of the gross exterior wall area of the addition.
(d) The R-values for opaque thermal envelope components shall be equal to or greater than the applicable listed values in Table 22.20.

TABLE 22.20

<table>
<thead>
<tr>
<th>DESIGN ZONE a</th>
<th>MAXIMUM</th>
<th>MINIMUM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fenestration U-factor b, c</td>
<td>Ceiling R-value d</td>
</tr>
<tr>
<td>2-4</td>
<td>0.35</td>
<td>R-38</td>
</tr>
<tr>
<td>1</td>
<td>0.35</td>
<td>R-38</td>
</tr>
</tbody>
</table>

a Refer to Figure 22.07 for design zone boundaries.
b Exception: replacement skylights shall have a maximum U-factor of 0.50.
c Fenestration shall meet s. Comm 22.05.
d Floors over outside air shall meet ceiling R-value requirements.
e Basement wall insulation shall be installed in accordance with s. Comm 22.28.
f Slab perimeter insulation shall be installed in accordance with s. Comm 22.26. An additional R-2 shall be added to slab perimeter R-value in the table if the slab is heated.
g Crawl space wall R-value shall apply to unventilated crawl spaces only. Crawl space insulation shall be installed in accordance with s. Comm 22.27.

Comm 22.21 Envelope requirements. (1) GENERAL.
(a) The stated U_{O,0}, U_{t}, or R-value of an assembly may be increased, or decreased, provided the total thermal transmission heat gain or loss for the entire dwelling does not exceed the total U_{O,0}, U_{t}, or R-value of an assembly resulting from conformance to the values specified in ss. Comm 22.23 to 22.28.
(b) Where basement and crawl space walls are part of the building envelope, their U-factors shall be based on the wall components and surface air films. Adjacent soil may not be considered in the determination.

Note: Foundation insulation techniques can be found in the federal DOE Building Foundation Design Handbook.

Comm 22.21 (2) APPLICATION OF STANDARDS FOR ELECTRICALLY HEATED DWELLINGS. (a) New dwellings. New dwellings that are electrically heated shall meet the thermal performance standards of this subchapter for electrically heated dwellings.
(b) Additions. If the combined input capacity of permanently installed electrical space heating equipment of the original dwelling and a new addition exceeds 3 kilowatts, either the addition shall meet the thermal performance standards of this subchapter for electrically heated dwellings or the entire dwelling and addition shall meet the thermal performance standards of this subchapter for electrically heated dwellings.
(c) Alterations. If an alteration results in the addition of perma-
nently installed electrical space heating equipment with a com-
combined input capacity of permanently installed electrical space
heating equipment of the altered house exceeds 3 kilowatts,
either the area served by the new electrical space heating equip-
ment shall meet the thermal performance standards of this sub-
chapter for electrically heated dwellings or the entire dwelling,
and the addition shall meet the thermal performance standards of
this sub-chapter for electrically heated dwellings.

(3) APPLIANCE CREDITS. The maximum overall heat loss
allowance may be increased when an equivalent amount of energy
savings is provided by the following types of high efficiency heat-
ing equipment:

(a) A furnace with an AFUE of 90% or greater.
(b) A boiler with an AFUE of 81% or greater.

Note: AFUE means annual fuel utilization efficiency.

(c) An air-source heat pump with an HSPF of 7.8 or greater.

Note: HSPF means heating seasonal performance factor.

(d) A geothermal heat pump.

(e) A radiant electric heat panel that meets all of the following
requirements:

1. The panel delivers at least 50% of its heat output by radia-
tion.

2. The panel reaches its operating temperature in 15 minutes
or less.

3. a. The panel is surface mounted.
 b. The panel is not located behind finish material, such as pan-
eling or carpeting and is not located within a wall, floor or ceiling
 assembly.

Note: The UDC Energy Worksheet and WIScheck software will determine
the amount of credit available.

| TABLE 22.21 |
| HEATING AND COOLING CRITERIA |

<table>
<thead>
<tr>
<th>Component of Dwelling Envelope</th>
<th>Maximum Overall Thermal Transmittance, U₀ or Minimum Thermal Resistance, R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof and Ceiling<sup>a</sup></td>
<td>Non-electrically Heated</td>
</tr>
<tr>
<td>Walls:</td>
<td>U₀ = 0.026</td>
</tr>
<tr>
<td>crawl space<sup>c,f</sup></td>
<td>U₀ = 0.060</td>
</tr>
<tr>
<td>basement<sup>c,f</sup></td>
<td>U₀ = 0.091</td>
</tr>
<tr>
<td>walls<sup>b</sup></td>
<td>U₀ = 0.110</td>
</tr>
<tr>
<td>Floors:</td>
<td>R = 8.5</td>
</tr>
<tr>
<td>heated slab-on-grade<sup>c,d,f</sup></td>
<td>U₀ = 0.050</td>
</tr>
<tr>
<td>over heated space<sup>e</sup></td>
<td>R = 6.5</td>
</tr>
<tr>
<td>unheated slab-on-grade<sup>c,d,f</sup></td>
<td>U₀ = 0.033</td>
</tr>
<tr>
<td>over outside air (overhang)</td>
<td></td>
</tr>
</tbody>
</table>

^a Roof and ceiling assemblies include attic access panels and skylights.
^b See definition of gross exterior wall area.
^c Insulation installed below grade shall be suitable for that application.
^d "Heated slab" means slab-on-grade construction in which the heating elements or hot air distribution system is in contact with or placed within the slab or the subgrade.
^e The required U-value refers to the insulation only.
^f Includes unheated crawl spaces, basements, garages, and other spaces outside of the dwelling envelope.
^g The required U-value applies to the floor or wall assembly only, excluding the effect of soil.

History: Cr. Register, January, 1999, No. 517, eff. 2–1–99; CR 02-077: r. and recre. (1), cr. (3), am. Table Register May 2003 No. 569, eff. 8–1–03.

Comm 22.22 Vapor retarders. (1) GENERAL. (a) Designs shall prevent deterioration from moisture condensation.

(b) Vapor retarders shall have a rating of 1.0 perm or less when tested in accordance with ASTM standard E 96, Procedure A.

(c) The vapor retarder shall be continuous. All joints in the vapor retarder shall be overlapped and secured or sealed. Rips and punctures in the vapor retarder shall be patched with vapor retarder materials and taped or sealed.

(2) FRAME ASSEMBLIES. In all frame walls, floors and ceilings, the vapor retarder shall be installed on the warm side of the thermal insulation. The vapor retarder shall cover the exposed insulation and the interior face of studs, joists and rafters. No vapor retarder is required in the box sill.

(3) CONCRETE FLOORS. A vapor retarder shall be installed under the slab or under the base course of slabs and basement floors unless the slab is in an unheated attached garage.

(4) CONCRETE OR MASONRY BASEMENT WALLS. A vapor retarder is not required in concrete or masonry basement wall below-ground applications.

(5) CRAWL SPACES. A vapor retarder shall be provided over crawl space floors in accordance with s. Comm 21.05 (4).

(6) WOOD FOUNDATIONS. Vapor retarders for wood foundations shall be in accordance with the standard adopted under s. Comm 22.24, Table 20.24–2 item 2.

History: Cr. Register, January, 1999, No. 517, eff. 2–1–99; correction in (6) made under s. 13.93(GNR) (b) 7., Stats., Register, March, 2001, No. 543; CR 02-077: cr. (6) Register May 2003 No. 569, eff. 8–1–03.

Comm 22.23 Walls. (1) GENERAL. The combined thermal transmittance value (U₀) of the gross area of exterior walls shall not exceed the value given in Table 22.21. Equation 1 in s. Comm 22.31 (1) shall be used to determine acceptable combinations to meet this requirement.

(2) METAL STUD FRAMING. When metal stud framing is used, the value of U₀ used in Equation 1 in s. Comm 22.31 (1) shall be recalculated using a series-parallel heat flow path procedure to correct for parallel path thermal bridging. The U₀, for purposes of Equation 1 in s. Comm 22.31 (1), of metal stud walls shall be determined as follows:

\[
U₀ = \frac{1}{\frac{1}{R_1} + (\frac{R_{ins}}{x})^F_c}
\]

where:

\[
R_1 = \text{the total thermal resistance of the elements, in series along the path comprising the wall assembly of heat transfer, excluding the cavity insulation and the metal stud.}
\]

\[
R_{ins} = \text{the R-value of the cavity insulation.}
\]

\[
F_c = \text{the correction factor listed in Table 22.23.}
\]
TABLE 22.23

<table>
<thead>
<tr>
<th>Size of Member</th>
<th>Spacing of Framing</th>
<th>Cavity Insulation R-Value</th>
<th>Correction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 X 4</td>
<td>16 o.c.</td>
<td>R – 11</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R – 13</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R – 15</td>
<td>0.43</td>
</tr>
<tr>
<td>2 X 4</td>
<td>24 o.c.</td>
<td>R – 11</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R – 13</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R – 15</td>
<td>0.52</td>
</tr>
<tr>
<td>2 X 6</td>
<td>16 o.c.</td>
<td>R – 19</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R – 21</td>
<td>0.35</td>
</tr>
<tr>
<td>2 X 6</td>
<td>24 o.c.</td>
<td>R – 19</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R – 21</td>
<td>0.43</td>
</tr>
<tr>
<td>2 X 8</td>
<td>16 o.c.</td>
<td>R – 25</td>
<td>0.31</td>
</tr>
<tr>
<td>2 X 8</td>
<td>24 o.c.</td>
<td>R – 25</td>
<td>0.38</td>
</tr>
</tbody>
</table>

History: Cr. Register, January, 1999, No. 517, eff. 2–1–99; CR 02–077; am. Table 22.23 Register May 2003 No. 569, eff. 8–1–03.

Comm 22.24 Roof and ceiling.
The combined thermal transmittance value, or U_0, of the gross area of the roof or ceiling assembly may not exceed the value given in Table 22.21. Equation 2 in s. Comm 22.23 (1) shall be used to determine acceptable combinations to meet this requirement. Skylight shafts, 12 inches in depth and greater, shall be provided with cavity insulation of R–1.3 and continuous insulation over framing of R–5, or have an equivalent assembly U–value.

History: Cr. Register, January, 1999, No. 517, eff. 2–1–99; CR 02–077; am. Register May 2003 No. 569, eff. 8–1–03.

Comm 22.25 Floors over unheated spaces.
The combined thermal transmittance value U_0 of the gross area of floors that are over unheated spaces and of floors over outdoor air, such as overhangs, shall not exceed the values given in Table 22.21. Equation 3 in s. Comm 22.31 (1) shall be used to determine acceptable combinations to meet this requirement.

History: Cr. Register, January, 1999, No. 517, eff. 2–1–99; CR 02–077; am. Register, March, 2001, No. 543, eff. 4–1–01.

Comm 22.26 Slab–on–grade floors.
(1) Where the perimeter edge of a slab–on–grade floor is above grade or less than 12 inches below the finished grade, the thermal resistance of the insulation around the perimeter of the floor shall not be less than the value given in Table 22.21.

(2) Insulation shall be placed on the outside of the foundation or on the inside of a foundation wall. The insulation shall extend downward from the top of the slab for a minimum of 48–inches or downward to at least the bottom of the slab and then horizontally to the interior or exterior for a minimum total distance of 48–inches.

(3) Horizontal insulation extending outside of the foundation shall be covered by pavement or by soil a minimum of 10 inches thick. The top edge of insulation installed between the exterior wall and the edge of the interior slab may be cut at a 45° angle away from the exterior wall.

History: Cr. Register, January, 1999, No. 517, eff. 2–1–99.

Comm 22.27 Crawl space walls.
(1) If the crawl space does not meet the requirements of s. Comm 22.25 and does not have ventilation openings which communicate directly with outside air, then the exterior walls of the crawl space shall have a thermal transmittance value not exceeding the value given in Table 22.21.

(2) (a) The vertical wall insulation shall extend from the top of the wall to at least the inside ground surface.

(b) Where the vertical wall insulation stops less than 12 inches below the outside finish ground level, crawl space wall insulation shall extend horizontally and vertically downward a minimum total distance of 24 inches linearly from the outside finish ground level.

History: Cr. Register, January, 1999, No. 517, eff. 2–1–99; r. and recr. (2), Register, March, 2001, No. 543, eff. 4–1–01.

Comm 22.28 Basement walls.
(1) Except as provided in subs. (3) and (4), the exterior walls of basements below uninsulated floors shall have a transmittance value not exceeding the value given in Table 22.21.

(2) (a) Except as provided in par. (b), the insulation shall extend to the level of the basement floor.

(b) Changes in the exterior insulation area and basement wall minimum thermal transmittance may be included as part of a tradeoff allowed under the method of design by system analysis or other approved compliance method.

(c) If interior insulation is used for code compliance, it shall extend the full height of the wall from basement floor to the underside of the joists above unless tradeoffs are justified by supporting calculations that consider lateral heat conduction in the wall.

(3) Where the total gross basement wall area is less than 50% below grade, the entire wall area, including the below–grade portion, is included as part of the gross area of exterior walls.

(4) For the purpose of determining compliance with dwelling envelope performance requirements, non–opaque areas, including windows and doors, of all basement walls shall be included in the gross area of exterior walls.

History: Cr. Register, January, 1999, No. 517, eff. 2–1–99; r. and recr. (2), Register, March, 2001, No. 543, eff. 4–1–01.

Comm 22.29 Masonry veneer.
When insulation is placed on the exterior of a foundation supporting a masonry veneer exterior, the horizontal foundation surface supporting the veneer is not required to be insulated to satisfy the foundation insulation requirement.

History: Cr. Register, January, 1999, No. 517, eff. 2–1–99.

Comm 22.30 Air leakage.
(1) **GENERAL.** The requirements of this section apply to those dwelling components that separate interior dwelling conditioned space from the outdoor ambient conditions, or unconditioned spaces such as crawl spaces, and
exempted portions of the dwelling from interior spaces that are heated or mechanically cooled. The requirements are not applicable to the separation of interior conditioned spaces from each other.

(2) WINDOW AND DOOR ASSEMBLIES. (a) General. Except as specified in par. (b), window and door assemblies installed in the building envelope shall comply with the following maximum infiltration rates, determined in accordance with ASTM E 283:

1. Windows and sliding doors shall have a maximum infiltration rate of 0.3 cfm per square foot of window area.
2. Swinging doors shall have a maximum infiltration rate of 0.5 cfm per square foot of area of the door assembly.

(b) Exception. Site-constructed doors and windows shall be sealed with gasketing or weatherstripping or shall be covered with a storm door or storm window.

(3) JOINT PENETRATION SEALING. (a) Exterior joints, seams or penetrations in the dwelling envelope, that are sources of air leakage, shall be sealed with durable caulking materials, closed with gasketing systems, taped, or covered with moisture vapor permeable house wrap. Exterior joints to be treated include all of the following:

1. Openings, cracks and joints between wall cavities and window or door frames.
2. Between separate wall assemblies or their sill-plates and foundations.
3. Between walls, roof, ceilings or attic, ceiling seals, and between separate wall panel assemblies.
4. Penetrations of utility services through walls, floor and roof assemblies, and penetrations through the wall cavity of top and bottom plates.

(b) Sealing shall be provided around tubs and showers, at the attic and crawl space panels, at recessed lights and around all plumbing and electrical penetrations, where these openings are located in the dwelling envelope between conditioned space or between the conditioned space and the outside.

History: Cf. Register, January 1999, No. 517, eff. 2-1-99; CR 02-077: p. 2. and recr. 2003 No. 569, eff. 8-1-03.

Comm 22.31 Calculations. The following equations shall be used as specified in this chapter:

(1) **Equation 1.**

\[
U_0 = \frac{(U_w A_w) + (U_g A_g) + (U_d A_d)}{A_0}
\]

where:

- \(U_0\) = the overall thermal transmittance of the gross exterior wall area.
- \(A_w\) = the gross area of the exterior walls.
- \(U_w\) = the overall thermal transmittance of the various paths of heat transfer through the opaque exterior wall area.
- \(A_g\) = area of exterior walls that are opaque.
- \(U_g\) = the thermal transmittance of the windows.
- \(A_d\) = area of all windows within the gross wall area.
- \(U_d\) = the thermal transmittance of the door area.

(a) When more than one type of wall, window or door is used, the \(U\) and \(A\) terms for those items shall be expanded into sub-elements as:

\[(U_{w1} A_{w1}) + (U_{w2} A_{w2}) + (U_{w3} A_{w3}) \text{ (etc.)}\]

(b) Unless exact areas are calculated, the gross exterior wall area with framing 24-inches on center shall be assumed to be at least 22% framing area, and the gross exterior wall area with framing 16-inches on center shall be assumed to be at least 25% framing area.

(2) **Equation 2.**

\[
U_0 = \frac{(U_R A_R) + (U_S A_S)}{A_0}
\]

where:

- \(U_0\) = the overall thermal transmittance of the roof and ceiling gross area.
- \(A_R\) = the gross area of the roof and ceiling assembly.
- \(U_R\) = the thermal transmittance of all elements of the opaque roof and ceiling area.
- \(A_S\) = the gross area of the opaque roof and ceiling assembly.
- \(U_S\) = the thermal transmittance of the area of all skylight elements in the roof and ceiling assembly.

(a) When more than one type of roof or ceiling, skylight or door is used, the \(U\) and \(A\) terms for those items shall be expanded into sub-elements as:

\[(U_{R1} A_{R1}) + (U_{R2} A_{R2}) + \text{ (etc.)}\]

(b) Access doors, hatches, plenums, or other areas in a roof and ceiling assembly shall be included as a sub-element of the roof and ceiling assembly.

(c) Unless exact areas are calculated, wood frame ceilings shall be assumed to be 7% framing area for joists 24-inches on center and 10% framing area for joists 16-inches on center.

(3) **Equation 3.**

\[
U_0 = \frac{(U_{f1} \times A_{f1}) + (U_{f2} \times A_{f2}) + (U_{fo} \times A_{fo})}{A_0}
\]

where:

- \(U_0\) = the overall thermal transmittance of the floor assembly.
- \(A_o\) = the gross area of the floor assembly.
- \(U_{fo}\) = the thermal transmittance of the various heat transfer paths through the floor.
- \(A_{fo}\) = the area associated with the various paths of heat transfer.

(a) Unless exact areas are calculated, wood frame floors shall be assumed to be 7% framing area for joists 24-inches on center and 10% framing area for joists 16-inches on center.

(b) Access doors or hatches in a floor assembly shall be calculated as a separate element of the floor assembly using equation 3.

(4) **ACCURACY OF CALCULATIONS.** The thermal transmittance \((U_0)\) values and dwelling dimensions used in heat gain or loss calculations shall have a minimum decimal accuracy of 3 places rounded to 2, except that the \(U_0\) values used for calculating ceiling transmission shall have a minimum decimal accuracy of 4 places rounded to 3.

(5) **VALUES.** Unless otherwise specified in this chapter, the thermal transmittance and resistance values used in heat gain or loss calculations shall be determined by one of the following methods:

(a) The values shall be those given in the ASHRAE Handbook of Fundamentals as adopted under Table 20.24-6.

Note: See the appendix under "Typical Thermal Properties of Building Materials" for ASHRAE values.

(b) 1. Testing to a nationally-recognized test standard by an independent third party that is submitted for department review and approval under s. Comm 23.18.

2. The testing shall verify the claimed thermal resistance for the specific application of the product or assembly.
3. For foam plastic insulation that uses a blowing agent other than air, the independent third-party tests shall use samples that have been aged for the equivalent of 5 years or until the R-value has stabilized.

History: Cr. Register, January, 1999, No. 517, eff. 2-1-99; r. and recr. (5), Register, March, 2001, No. 543, eff. 4-1-01; CR 02-077: am. (3) Register May 2003 No. 569, eff. 8-1-03; correction in (5) (a) made under s. 13.93 (2m) (b) 7., Stats., Register May 2003 No. 569.

Comm 22.32 Recessed lighting fixtures. When installed in the dwelling envelope, recessed lighting fixtures shall meet any one of the following requirements:

1. The fixture shall be inherently or thermally protected type IC and installed inside an air-tight assembly maintaining any clearances required by the listing.

2. The fixture shall be inherently or thermally protected type IC, manufactured with no penetrations between the inside of the recessed fixture and ceiling cavity, and sealed or gasketed to prevent air leakage into the unconditioned space.

3. The fixture shall be inherently or thermally protected type IC, labeled as being tested in accordance with ASTM E 283 at a pressure difference of 75 pascals or 1.57 lb/ft² with no more than 2.0 cfm air movement from the conditioned space to the ceiling cavity.

History: Cr. Register, January, 1999, No. 517, eff. 2-1-99.

Subchapter VII — Design By Systems Analysis and Design of Dwellings Utilizing Renewable Energy Sources

Comm 22.33 General. The requirements of subch. V, “Heating and Air Conditioning Equipment and Systems” and the requirements of subch. VI, “Dwelling Envelope Design” establish design criteria for energy-consuming and enclosure elements of the dwelling. As an alternative, an energy use analysis may be used to show equivalent compliance. The analysis shall comply with this subchapter or shall be approved by the department.

Note: The department recognizes the use of tradeoffs between higher efficiency furnaces and lower insulation levels. See appendix for an example of the UDC Energy Worksheet. Copies of the worksheet may be obtained from the Department of Commerce, Safety and Buildings Division, P. O. Box 2509, Madison, WI 53701. Other forms or software may be used when approved by the department. WIScheck software may be used to show compliance and is available from the Safety & Buildings page of the Department of Commerce Website www.commerce.state.wi.us.

History: Cr. Register, January, 1999, No. 517, eff. 2-1-99.

Comm 22.335 Definitions. In this subchapter:

1. “Glazing area” means the total area of the glazed fenestration measured using the rough opening and including sash, curbing or other framing elements that enclose conditioned space. For doors where the daylight opening area is less than 50 percent of the door area, the glazing area is the daylight opening area. For all other doors, the glazing area is the rough opening area for the door including the door and the frame.

2. “Proposed design” means a description of the proposed building design used to estimate annual energy costs for determining compliance based on total building performance.

3. “Standard design” means a dwelling whose enclosure elements and energy-consuming systems are designed in accordance with subchs. V and VI.

4. “Substantially leak free” means the condition under which the entire air distribution system, including the air handler cabinet, is capable of maintaining a 0.1-inch water gage, or 25 Pa internal pressure at 5 percent or less of the air handler’s rated airflow when the return grilles and supply registers are sealed off, using a test method approved by the department.

Note: The department will accept tests conducted using the SMACNA HVAC Air Duct Leakage Test Manual, or other, similar test methods.

History: CR 02-077: cr. Register May 2003 No. 569, eff. 8-1-03.

Comm 22.34 Energy analysis. (1) Newly constructed one- and 2-family dwellings designed in accordance with this subchapter comply with subchs. V and VI if the calculated annual energy consumption is not greater than a similar dwelling, designed as a standard design, whose energy-consuming systems and enclosure elements are designed in accordance with subchs. V and VI.

Note: In this subchapter, “standard design” means a dwelling whose enclosure elements and energy-consuming systems are designed in accordance with subchs. V and VI.

2. For a proposed alternate dwelling design to be considered similar to a standard design, it shall utilize the same energy sources for the same functions and have equal conditioned floor area and the same ratio of dwelling envelope area to floor area, exterior design conditions, climate data, and usage operational schedule.

History: Cr. Register, January, 1999, No. 517, eff. 2-1-99; CR 02-077: am. (2) Register May 2003 No. 569, eff. 8-1-03.

Comm 22.35 Input values. (1) General. The input values in this section shall be used in calculating annual energy performance. The requirements of this section specifically indicate which variables shall remain constant between the standard dwelling and proposed dwelling calculations. The standard dwelling shall be a base-configuration design that directly complies with the provisions of this chapter. The proposed dwelling may utilize a design that is demonstrated, through calculations satisfactory to the department, to have equal or lesser annual energy use than the standard design.

2. Input values for glazing and shading systems. (a) Orientation of standard design. The orientation of the standard design shall have equal area on the north, northeast, south, southwest, east, southeast, west, and northwest exposures.

(b) Shading calculations for proposed design. Results from shading calculations on a proposed design may not be used for groups of buildings, unless those results constitute the worst possible building orientation in terms of annual energy use, considering all eight of the orientations under part. (a) for a group of otherwise identical proposed designs.

(c) Exterior shading for standard design. 1. Glazed areas in the standard design may not be provided with extra exterior shading such as roof overhangs.

2. The energy performance impacts of added exterior shading for glazing areas may be accounted for in the proposed design for a specific dwelling, provided that the actual installation of such systems is approved by the department.

(d) Fenestration system solar heat gain coefficient, standard design. 1. The fenestration system solar heat gain coefficient, or SHGC, inclusive of framed sash and glazing area, of the glazing systems in the standard design shall be 0.68 during periods of mechanical heating and cooling operation.

2. a. The fenestration system SHGC values shall be multiplied by interior shading values of 0.70 for summer and 0.90 for winter to arrive at an overall SHGC for the glazing system.

b. Where the SHGC characteristics of the proposed fenestration products are not known, the default SHGC values given in Table 22.35–3 shall be used for the proposed design.

(e) Interior shading for standard and proposed designs. 1. a. Except as specified in subd. 2., the same schedule of interior shading values, expressed as the fraction of the solar heat gain admitted by the fenestration system that is also admitted by the interior shading, shall be assumed for the standard and proposed designs.

b. The values used for interior shading shall be 0.70 in summer, and 0.90 in winter.

2. South-facing solar gain apertures on passive heating proposed designs analyzed using interior shading values for interior shading specific to those shading measures may be specified in the proposed design, with values above used in the standard design.

(f) Passive solar designs. Passive solar designs shall provide documentation acceptable to the department, that fixed external...
or other acceptable shading is provided to limit excessive summer cooling energy gains to the dwelling interior.

(3) **INPUT VALUES FOR HEAT STORAGE AND THERMAL MASS.** (a) Internal mass shall be 8 pounds per square foot.
(b) Structural mass shall be 3.5 pounds per square foot.
(c) Passive solar designs shall utilize at least 45 Btu/F°F of additional thermal mass, per square foot of added glass area, when south-facing glass exceeds 33% of the total glass area in walls.

(4) **INPUT VALUES FOR DWELLING ENVELOPE.** (a) **Surface area and volume.** 1. Floors, walls and ceilings of the standard and proposed designs shall have equal areas.
2. The foundations and floor types for both the standard and the proposed designs shall be equal.
3. a. The exterior door area of the standard design shall have an equal exterior door area to that of the proposed design with a U-factor of 0.2 Btu/h. ft.² °F.
 b. The U₉ of the standard design shall be selected to permit calculated U₉ wall compliance of the standard design.
4. Building volume of both the standard and proposed design shall be equal.

(b) **HVAC controls.** Heating and cooling thermostats shall be set to the default settings in Table 22.35–1 for the standard and proposed designs. The input values, specific to heating and cooling controls, shall be used in calculating annual energy performance.

<table>
<thead>
<tr>
<th>TABLE 22.35–1</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT VALUES FOR HVAC CONTROLS</td>
</tr>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Heating</td>
</tr>
<tr>
<td>Cooling</td>
</tr>
<tr>
<td>Set back or set up</td>
</tr>
<tr>
<td>Set back or set up duration</td>
</tr>
<tr>
<td>Number of set back or set up periods per unit</td>
</tr>
<tr>
<td>Maximum number of zones per unit</td>
</tr>
<tr>
<td>Number of thermostats per zone</td>
</tr>
</tbody>
</table>

(c) **Internal heat gains.** The input value of 3,000 Btu/hr per dwelling unit, specific to internal heat gains, shall be used in calculating annual energy performance.

(d) **Domestic hot water.** The following input values, specific to domestic hot water, shall be used in calculating annual energy performance:
1. The temperature set point is 120°F.
2. Daily hot water consumption in gallons = (30 x a) + (10 x b) where a = number of dwelling units in standard and proposed designs and b = number of bedrooms in each dwelling.

(5) **SITE WEATHER DATA CONSTANTS.** Weather data from the typical meteorological year or its equivalent from the National Oceanic and Atmospheric Administration or an approved equivalent for the closest available location shall be used.

(6) **DISTRIBUTION SYSTEM LOSS FACTORS.** (a) The heating and cooling systems efficiency shall be proportionally adjusted for those portions of the ductwork located outside or inside the conditioned space using the following equations:
1. Adjusted Efficiency = Equipment Efficiency x Distribution Loss Factor.
2. Total Adjusted System Efficiency = (Adjusted Efficiency x percent of ducts outside) + (Adjusted Efficiency x percent of ducts inside).
3. Distribution loss factors shall be determined using Table 22.35–2.

<table>
<thead>
<tr>
<th>TABLE 22.35–2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTRIBUTION LOSS FACTORS</td>
</tr>
<tr>
<td>Mode</td>
</tr>
<tr>
<td>Heating</td>
</tr>
<tr>
<td>Cooling</td>
</tr>
</tbody>
</table>

* Ducts located in a heated or cooled space are considered as being in an inside location.

(b) Impacts from an improved distribution loss factor, or DLF, shall be accounted for in the proposed design only if the entire air distribution system is specified on the construction documents to be substantially leak free, and is tested after installation to ensure that the installation is substantially leak free.

(c) Where test results show that the entire distribution system is substantially leak free, the seasonal DLF shall be calculated separately for heating and cooling modes using engineering methods or programs capable of considering the net seasonal cooling energy heat gain impacts and the net seasonal heating energy heat loss impacts that result from the portion of the thermal air distribution system that is located outside the conditioned space.

(d) Once these heating and cooling season distribution system energy impacts are known, the heating and cooling mode DLF for the proposed design shall be calculated using the following two equations:
2. DLF = Seasonal Building Energy / Total Seasonal Energy.

(e) Once the DLF for the heating and cooling seasons are known, the total adjusted system efficiency is calculated using the following equations and conditions:
1. Adjusted System Efficiency = (Equipment Efficiency x DLF x Percent of Duct Outside) + (Equipment Efficiency x DLF x Percent of Duct Inside).
2. a. This equation shall be used to develop adjusted system efficiency for each heating and cooling system included in the standard design.
 b. Where a single system provides both heating and cooling, efficiencies shall be calculated separately for heating and cooling modes.

<table>
<thead>
<tr>
<th>TABLE 22.35–3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCT</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Metal Frame Operable</td>
</tr>
<tr>
<td>Fixed</td>
</tr>
<tr>
<td>Nonmetal Frame Operable</td>
</tr>
<tr>
<td>Fixed</td>
</tr>
</tbody>
</table>

Register December 2006 No. 612
Comm 22.35 WISCONSIN ADMINISTRATIVE CODE

(7) Air infiltration. (a) For the purpose of calculation, air changes per hour for the standard design is 0.50.

(b) If the proposed design takes credit for an increased air change per hour level, documentation of the measures providing the reduction or the results of a post-construction blower door test conducted in accordance with ASTM E 779 shall be provided to the department. In no case, shall the air exchange per hour value be less than 0.20.

History: Cr. Register, January, 1999, No. 517, eff. 2-1-99; CR 02-077: r and recr. (2), (4) (a) 3., (b), (4) (c), (d), (6) and Table 22.35-1, r (4) (a) 4., remin. (4) (a) 5. to be (4) (a) 4., cr. Table 22.35-3, am. (7) (b) Register May 2003 No. 569, eff. 8-1-03.

Comm 22.36 Design. The standard design and the proposed alternative design shall be designed on a common basis as specified in this section:

(1) The comparison shall be expressed in Btu input per square foot of gross floor area per year or other time unit, at the dwelling site.

(2) If the proposed alternative design results in an increase in consumption of one energy source and a decrease in another energy source, even though similar sources are used for similar purposes, the difference in each energy source shall be converted to equivalent energy units for purposes of comparing the total energy used.

(3) The different energy sources shall be compared on the basis of energy use at the dwelling site where 1 kWh = 3,413 Btu.

History: Cr. Register, January, 1999, No. 517, eff. 2-1-99.

Comm 22.37 Analysis procedure. The dwelling heating and cooling load calculation procedures shall be detailed to permit the evaluation factors specified in s. Comm 22.38 to provide a comparison of energy consumption between the alternative design and the standard design.

History: Cr. Register, January, 1999, No. 517, eff. 2-1-99.

Comm 22.38 Calculation procedure. The calculation procedure shall cover all of the following items that are expected to have a significant impact on the comparison of the energy consumption between the alternate design and the proposed design:

(1) Environmental design requirements as specified in subch. IV.

(2) Coincident hourly climatic data for temperatures, solar radiation, wind and humidity of typical days in the year representing seasonal variation.

(3) Dwelling orientation, size, shape, mass and volume.

(4) Air, moisture and heat transfer characteristics.

(5) Operational characteristics of controls for inside air temperature, humidity, ventilation, lighting, and the control mode for occupied and unoccupied hours.

(6) Mechanical equipment design capacity load profile.

(7) Dwelling loads of internal heat generation, lighting, equipment, and the number of occupants during occupied and unoccupied periods.

History: Cr. Register, January, 1999, No. 517, eff. 2-1-99.

Comm 22.39 Use of approved calculation tool. The same calculation tool or method shall be used to estimate the energy usage for space heating and cooling of the standard design and the proposed design. The calculation tool or method and the documentation shall be approved by the department.

History: Cr. Register, January, 1999, No. 517, eff. 2-1-99.

Comm 22.40 Documentation. Proposed alternative designs submitted as requests for exception to the standard design criteria, shall be accompanied by an energy analysis comparison report. The report shall provide technical detail on the 2 dwellings, system designs, and data used in and resulting from the comparative analysis verifying that both analysis designs meet the criteria of this chapter.

History: Cr. Register, January, 1999, No. 517, eff. 2-1-99.

Comm 22.41 Renewable energy source analysis. (1) A proposed dwelling utilizing solar, geothermal, wind or other renewable energy sources for all or part of its energy sources shall meet the requirements of s. Comm 22.33, except such renewable energy may be excluded from the total annual energy consumption allowed for the proposed dwelling by this subchapter.

(2) To qualify for the exclusion in sub. (1), the renewable energy must be derived from a specific collection, storage, and distribution system. The solar energy passing through windows shall also be considered as qualifying if such windows are provided with one of the following:

(a) Operable insulation shutters or other devices which, when drawn or closed, cause the window area to reduce maximum outward heat flows to those in accordance with s. Comm 22.31 (2), and the windows are shaded from direct solar radiation during periods when mechanical cooling is requested.

(b) The glass is double or triple pane insulated glass with a low-emittance coating on one or both surfaces of the glass, or insulated glass with a low-emittance plastic film suspended in the air space, and the glass areas are shaded from direct solar radiation during periods when mechanical cooling is requested.

(3) Other criteria covered in ss. Comm 22.23 to 22.32 shall apply to the proposed alternative designs utilizing renewable sources of energy.

History: Cr. Register, January, 1999, No. 517, eff. 2-1-99.

Comm 22.42 Documentation. (1) Proposed alternative designs submitted as requests for an exception to the standard design criteria, shall be accompanied by an energy analysis as specified in s. Comm 22.40. The report shall provide technical detail on the alternative dwelling, system designs, and the data employed in and resulting from the comparative analysis to verify that both the analysis and the designs meet the criteria of this code.

(2) The energy derived from renewable sources and the reduction in conventional energy requirements derived from nocturnal cooling shall be separately identified from the overall dwelling energy use. Supporting documentation on the basis of the performance estimates for the renewable energy sources and nocturnal cooling means specified in this subchapter shall be submitted to the department.

History: Cr. Register, January, 1999, No. 517, eff. 2-1-99.