ELECTRICAL CODE ADVISORY COMMITTEE MEETING
 Room 121C, 1400 East Washington Avenue, Madison
 Contact: Dale Kleven (608) 261-4472

July 28, 2016
The following agenda describes the issues that the Committee plans to consider at the meeting. At the time of the meeting, items may be removed from the agenda. Please consult the resulting meeting minutes for a description of the recommendations of the Committee.

AGENDA

9:00 A.M.

CALL TO ORDER - ROLL CALL

A. Adoption of Agenda (1)
B. Approval of Minutes of June 8, 2016 (2-4)
C. Department Update
D. Review and Discussion of Changes to the NEC (5-97)

1) Certified Amending Motions for the NEC
2) NEC Code Revisions
3) Division of Industry Services Recommendations
4) Wisconsin Considerations and Committee Recommendations

E. Public Comments

F. Adjournment

SPS 316 ELECTRICAL CODE ADVISORY COMMITTEE MEETING
 MEETING MINUTES
 June 8, 2016

PRESENT Steven Bacalzo, Joseph Bembnister, Brad Gruenewald, Paul Gruettner, David Helgeson, Gene Jacobson, Charles Johansen, Bill Neitzel, Cory Schmoll
EXCUSED Shannon Clark, John Nikolai
STAFF Dale Kleven, Rules Coordinator; Jeff Grothman, Policy Advisor; Anthony Tadysak, DIS Engineering Consultant; Nifty Lynn Dio, Bureau Assistant; and other Department staff

CALL TO ORDER

Bill Neitzel, called the meeting to order at 9:00 a.m. A quorum of nine(9) members was confirmed.

ADOPTION OF AGENDA

Amendments to the Agenda

- Addressing Public Comments before Discussion of NEC Reccommendations

MOTION: Brad Gruenewald moved, seconded by Gene Jacobson, to adopt the agenda as amended. Motion carried unanimously.

APPROVAL OF MINUTES

MOTION: Gene Jacobson moved, seconded by Brad Gruenewald, to approve the minutes of May 9, 2016 as published. Motion carried unanimously.

REVIEW AND DISCUSSION OF CHANGES TO THE NEC

NEC Code Revisions

MOTION: Cory Schmoll moved, seconded by Charles Johansen, to accept the recommended change from the Division of Industry Services to SPS 316.002 with the addition of Energy Storage Systems into SPS 316.002(2)(e)3. Motion carried unanimously.

MOTION: Charles Johansen moved, seconded by David Helgeson, to accept the recommended change from the Division of Industry Services to create SPS 316.003(6) concerning additions and alterations. Motion carried unanimously.

MOTION: Joseph Bembnister moved, seconded by Charles Johansen, to accept the addition to SPS 316.004 as recommended by the Division of Industry Services. Motion carried unanimously.

MOTION: Paul Gruettner moved, seconded by Gene Jacobson, to delete the last sentence of SPS 316.010 as recommended by the Division of Industry Services. Motion carried unanimously.

MOTION: Charles Johansen moved, seconded by Cory Schmoll, to accept the recommended change from the Division of Industry Services to SPS 316.012(1) and (2). Motion carried unanimously.

MOTION: Gene Jacobson moved, seconded by Paul Gruettner, to specify that SPS 316.013(1) pertains to electric fence controllers for non-humans. Motion carried unanimously.

MOTION: Joseph Bembnister moved, seconded by Steven Bacalzo, to delete SPS $316.100(2)$ (a) as recommended by the Division of Industry Services. Motion carried unanimously.

MOTION: Charles Johansen moved, seconded by Gene Jacobson, to delete SPS 316.110 as recommended by the Division of Industry Services. Motion carried unanimously.

MOTION: Charles Johansen moved, seconded by Gene Jacobson, to recreate SPS 316.110 to modify NEC 110.3 (C) to include a Professional Engineer as an acceptable method. Motion carried unanimously.

MOTION: David Helgeson moved, seconded by Paul Gruettner, to request DSPS staff to investigate the possiblility of renumbering SPS 316 and adding subsections to correlate with the 2017 NEC. Motion carried. Opposed: Johansen

MOTION: David Helgeson moved, seconded by Gene Jacobson, to delete SPS 316.210(1) and (3) as recommended by the Division of Industry Services. Motion carried unanimously.

MOTION: Paul Gruettner moved, seconded by Brad Gruenewald, to add NEC 210.8(B) to the exception in SPS 316.210 (2) as recommended by the Division of Industry Services. Motion carried unanimously.

MOTION: David Helgeson moved, seconded by Joseph Bembnister, to add condensate pumps to the exception in SPS 316.210(2). Motion carried unanimously.

MOTION: David Helgeson moved, seconded by Brad Gruenewald, to, in SPS 316.210, accept the substitute language suggested by the Division of Industry Services for NEC 210.52(C)(3). Motion carried unanimously.

MOTION: David Helgeson moved, seconded by Cory Schmoll, to add language to SPS 316.210 that the provisions of 2017 NEC 210.71 do not apply to exsisting buildings. Motion carried unanimously.

MOTION: Paul Gruettner moved, seconded by Charles Johansen, to delete SPS 316.220(1), SPS 316.225(1), SPS 316.230(1)(a) and SPS 316.230(1)(c) as recommended by the Division of Industry Services. Motion carried unanimously.

MOTION: Joseph Bembnister moved, seconded by David Helgeson, to substitute the wording in 2017 NEC 225.30(F) with the wording in SPS 316.225(2)(a). Motion carried unanimously.

MOTION: Cory Schmoll moved, seconded by Paul Gruettner, to request DSPS staff seek clarification concerning the public comment regarding overcurrent protection for direct burial of service conductors. Motion carried unanimously.

MOTION: Joseph Bembnister moved, seconded by Chaeles Johansen, to affirm that the Committee has reviewed the second draft of the 2017 NEC article 90 through 225 and SPS 316.001 through SPS 316.225 and established an agreement on acceptance and modifications as made by the Committee. Motion carried unanimously.

ADJOURNMENT

MOTION: Brad Gruenewald moved, seconded by Gene Jacobson, to adjourn the meeting. Motion carried unanimously.

The meeting adjourned at 3:03 p.m.

During today's NFPA Technical Meeting in Las Vegas, the following action has taken place on NFPA 70^{\circledR}, National Electrical Code ${ }^{\circledR}$

- 70-1 Motion to Accept an Identifiable Part of Committee Comment No. 19002 failed.
- 70-2 Motion to Accept Public Comment No. 1134 failed.
- 70-3 Motion to Accept an Identifiable Part of Public Comment No. 793 passed.
- 70-4 Motion to Reject Second Revision No. 1004 passed.
- 70-5 Motion to Accept Public Comment No. 1136 failed.
- 70-6 Motion to Accept Public Comment No. 741 was not pursued.
- 70-7 Motion to Reject an Identifiable Part of Second Revision No. 1223 passed.
- 70-8 Motion to Accept Public Comment No. 1219 failed.
- 70-9 Motion to Accept Public Comment No. 1043 was not pursued.
- 70-10 Motion to Accept Public Comment No. 583 was not pursued.
- 70-11 Motion to Accept Public Comment No. 1401 failed.
- 70-12 Motion to Accept Public Comment Nos. 589 and 320 was not pursued.
- 70-13 Motion to Reject Second Revision No. 2110 failed.
- 70-14 Motion to Accept Public Comment No. 834 passed.
- 70-15 Motion to Reject an Identifiable Part of Second Revision No. 1808 passed.
- 70-16 Motion to Accept Committee Comment No. 3902 and Reject Second Correlating Revision No. 3 failed.
- 70-17 Motion to Reject Second Correlating Revision No. 90 was not pursued.
- 70-18 Motion to Accept Committee Comment No. 3906 and Reject an Identifiable Part of Second Correlating Revision No. 94 was not pursued.
- 70-19 Motion to Accept Public Comment No. 806 failed.
- 70-20 Motion to Reject Second Revision No. 607 passed.
- 70-21 Motion to Reject Second Revision No. 5124, including any Related Portions of First Revision No. 5139 was not pursued.
- 70-22 Motion to Reject an Identifiable Part of Second Revision No. 5124 passed.
- 70-23 Motion to Reject an Identifiable Part of Second Revision No. 5124, including any Related Portions of First Revision No. 5139 passed.
- 70-24 Motion to Accept Public Comment No. 1588 failed.
- 70-25 Motion to Accept Public Comment Nos. 1719, 1509, 1097, and 1461 passed.
- 70-26 Motion to Accept Public Comment Nos. 1075, 1722, and 1534 failed.
- 70-27 Motion to Accept an Identifiable Part of Public Comment No. 46 passed.
- 70-28 Motion to Reject Second Correlating Revision No. 43 failed.
- 70-29 Motion to Accept an Identifiable Part of Public Comment No. 1711 passed.
- 70-30 Motion to Reject Second Correlating Revision No. 112 was not pursued.
- 70-31 Motion to Reject Second Revision No. 981 was not pursued.
- 70-32 Motion to Reject Second Revision No. 982 was not pursued.
- 70-33 Motion to Reject Second Revision No. 983 was not pursued.
- 70-34 Motion to Reject Second Revision No. 988 failed.
- 70-35 Motion to Reject Second Revision No. 989 was not pursued.
- 70-36 Motion to Reject Second Correlating Revision No. 116 was not pursued.
- 70-37 Motion to Reject Second Revision No. 987, including any Related Portions of First Revision No. 1045 failed.
- 70-38 Motion to Reject Second Revision No. 3627 was not pursued.
- 70-39 Motion to Reject Second Revision No. 611 failed.
- 70-40 Motion to Reject an Identifiable Part of Second Revision No. 615 was not pursued.
- 70-41 Motion to Accept Public Comment No. 73 passed.
- 70-42 Motion to Accept an identifiable part of Public Comment No. 1262 failed.
- 70-43 Motion to Reject Second Revision No. 4564, including any Related Portions of First Revision No. 4643 was not pursued

NFPA 70 was passed with 12 amending motions. NFPA 70 COMPLETED.

*REport of the Motions Committee on Certified Amending Motions FOR PRESENTATION AT THE 2016 NFPA TECHNICAL MEETING June 16, 2016 Las Vegas, NV FOR THE NFPA 70, NATIONAL ELECTRICAL CODE®

I. Introduction.

This is the third Motions Committee Report listing Certified Amending Motions that may be presented at the 2016 NFPA Technical Meeting in Las Vegas, NV on June 16, 2016, and is specific to the NEC ${ }^{\circledR}$. The Motions Committee, consisting of NFPA Standards Council Members R. Bradley, J. Golinveaux, B. Manley, D. O'Connor, R. Owen, J. Rickard (Chair) and M. Snyder has been appointed by the Chair of the Standards Council to certify proper amending motions and otherwise review and act, in accordance with 2.1 through 2.7 of the NFPA Technical Meeting Convention Rules (Convention Rules), on Notices of Intent to Make a Motion (NITMAMs) that have been submitted on NFPA 70, National Electrical Code ${ }^{\circledR}$, ($N E C^{\circledR}$) which is being processed in the Annual 2016 Revision Cycle.

An Agenda will be posted on the NFPA website prior to the NFPA Technical Meeting, which will include the present Report for the $N E C^{\circledR}$ (posted May 17, 2016); the Final Report for Annual 2016 Revision Cycle Documents (posted April 15, 2016); and the Report for the Fall 2015 Revision Cycle Documents (posted October 16, 2015). However, the Motions Committee may refine or revise the sequencing and/or grouping of previously published motions to facilitate the fair, orderly, and efficient consideration of the subjects presented by the motions at the NFPA Association Meeting. Please check the NFPA website to obtain the Consolidated Report.

The Certified Amending Motions for the $N E C^{\circledR}$ reporting in the Annual 2016 Revision Cycle are set forth in Part II of this Report; Part III of this Report summarizes motions on the $N E C^{\circledR}$ that were not certified by the Motions Committee. In reviewing this Report, the following should be considered:

- The only Amending Motions allowed at an NFPA Technical Meeting are Certified Amending Motions set forth in a report of the NFPA Motions Committee and any Follow-Up Motions, that is, motions that may become necessary as a result of a previous successful Amending Motion. (See Convention Rules at 3.4.4.)
- Certified Amending Motions at the NFPA Technical Meeting can only be made by person(s) listed in this Report as authorized to make the motion, or by persons designated in writing to the Standards Council Secretary by the motion submitter as their Designated Representative. (See Regulations Governing the Development of NFPA Standards (Regulations) at 4.5.3.5(c)).
- The Certified Amending Motions set forth in this Report are proper and permissible; they will, however, only be presented for consideration of the membership at the 2016 NFPA Technical Meeting if a person authorized to make the motion (or their Designated Representative) physically appears no later than one hour before the beginning of the session (see Convention Rules at 2.7), and makes the motion in accordance with NFPA rules.

The information presented above provides a general introduction to some of the relevant features of the NITMAM process and the presentation of Certified Amending Motions. For complete information of the process, participants should consult the Regulations and the Convention Rules. The Requirements for the submission of NITMAMs and the Certification of Amending Motions can be found at 2.0 of the Convention Rules and 4.5 of the Regulations. Membership action at NFPA Technical Meetings is detailed in the Convention Rules and in 4.5 .3 of the Regulations (published in the 2016 NFPA Standards Directory and available on the NFPA website at www.nfpa.org). For additional information about the NFPA standards development process, consult the NFPA website or contact NFPA Codes \& Standards Administration Department at 617-984-7248.

II. Certified Amending Motions.

Table A summarizes the Motions on the $N E C^{\circledR}$ that have been reviewed by the NFPA Motions Committee and certified as Certified Amending Motions. These motions can be presented for consideration at the 2016 NFPA Technical Meeting in Las Vegas. NV on June 16, 2016.

Previously, the Motions Committee had ruled that twenty-two Annual 2016 Revision Cycle Documents (other than $N E C^{\circledR}$) and one Fall 2015 Revision Cycle Document that have certified amending motions.

Note: In accordance with 1.6.2(a) of the Regulations, anyone who is dissatisfied with the results of the floor motions from the June 16, 2016 NFPA Technical Meeting or the result of the Technical Committee amendment ballots [see Regulations at 1.6.2(b)] have the right to appeal the results. Appeals shall be filed no later than twenty days following the NFPA Technical Meeting at which Association action on the issuance of the Standard was recommended. The final date to file any such appeal is July 6, 2016.

III. NITMAMs that were not Certified by Motions Committee.

Of the NITMAMs received on $N E C^{\circledR}$, six were not certified by the Motions Committee, and the Motions Committee approved the withdrawal of three NITMAMs. Table A itemizes the motions that were not certified.

Annual 2016 Final Motions Committee Report
Certified Amending Motions (CAMs)
Technical Meeting (Tech Session) - June, 2016
Motions Committee: Bradley, Golinveaux, Manley, O’Connor, Owen, Rickard (Chair), Snyder

	Part II
NFPA 70, National Electrical Code ${ }^{\circledR}$	No. of CAMs

NITMAM Closing Date:	April 29, 2016
Posted:	May 16, 2016
Tech Session:	June 16, 2016

Technical Meeting Schedule:

1) Thursday, June 16,2016 starts @ 8:00 AM

Special Note:

The NFPA Conference and Expo on June $13^{\text {th }}-16^{\text {th }}, 2016$ in Las Vegas, Nevada constitutes the third NFPA Technical Meeting (Tech Session) under the Regulations Governing the Development of NFPA Standards (Regs). Please note that under the current process, there will be no hard copies of the Technical Committee records (First Draft Report and Second Draft Report provided at the Tech Session). In addition to the Tech Session Agenda, which incorporates the Fall, NEC® and Annual Final Motions Committee Reports, the complete Technical Committee records (First Draft Report and Second Draft Report) including all changes to the appropriate NFPA Standard, can be found on the next edition tab of the specific Document Information page, http://www.nfpa.org/document\#.

Report Layout
Certified Amending Motions (CAMs)

This Report contains Certified Amending Motions (CAMs) for NFPA Standards in the Annual 2016 revision cycle that will be considered at the June, 2016 NFPA Technical Meeting (Tech Session). These motions have been certified and determined as proper by the Motions Committee in accordance with the Regulations Governing the Development of NFPA Standards (Regs) and the NFPA Technical Meeting Convention Rules (Convention Rules). Although the motions as certified will not change, the manner in which they are presented, their layout, and the accompanying supportive material may be modified (solely for presentation), removed or added to. Please make note of, and take into consideration, the following:

1) Report Sections

The Motions are displayed via two distinct sections which are as follows:
I. CAM Overview. Page 3 lists all the CAMs for NFPA 70 that can be pursued at the Tech Session. It includes a reference to the pages containing text that illustrates the potential impact of the CAMs if they were to pass or fail. This page is repeated for all other Annual 2016 Standards being considered at the Tech Session.
II. Effect of CAMs. Page 7 displays the potential text of NFPA 70 if Motion Seq \# 70-1 were to pass or fail. These pages immediately proceed the applicable CAM Overview page and follow the same order as the motion sequence numbers (Motion Seq \#). The impact of a successful CAM on the Second Draft text is shown legislatively. The effect of an unsuccessful motion is illustrated by simply showing the applicable Second Draft text, without legislative changes. Please see below the editorial legend used throughout these sections.

Draft text is displayed as follows:
 (Strikethrough: indicates the deletion of text)
 (Underline: indicates the addition of text)

2) Editorial Renumbering.

The text, which illustrates the certified amending motion, is derived from the First Draft Report and Second Draft Report. As a result, the section numbers and other materials relating to formatting are subject to change based on the final recommendations of the entire standards development process.

3) NFPA Technical Meeting Consideration.

The material provided in this Report is intended to illustrate the potential impact of a successful or unsuccessful Amending Motion on the text of an NFPA Standard. The amendment is based on the recommendation of the NFPA membership when an Amending Motion is filed and presented in accordance with the Regulations Governing the Development of NFPA Standards (Regs). IMPORTANT NOTE: The text as recommended by the NFPA membership is subject to the entire standards development process. Therefore, the standard, recommended amendment, and associated text cannot be considered final until the responsible committee(s) are balloted, where required by the Regs, and the standard is issued by the Standards Council. Per Table 1 of the Regs, any failed Ballot will result in a recommendation to return the related text to previous edition text.

Certified Amending Motion (CAM) Overview

Motion Seq \#	NITMAM Log \#	Panel \#	Section/Para	Person(s) Authorized to Make the Motion	Certified Amending Motion**	Motion Page \#
$70-1$	80	2	210.12	Jack Wells and John Goodsell, Arc Fault Circuit Interrupter Wiring Device Joint Research and Development Consortium	Multiple Notices for a Single Motion: Accept an Identifiable Part of Committee Comment No. 19002	8
$70-2$	123	4	225.27	Howard Herndon, Southwest Electritech Services LLC.	Accept Public Comment No. 1134	11
$70-3$	126	4	$225.30(F)$	John Masarick, Independent Electrical Contractors Inc.	Accept an Identifiable Part of Public Comment No. 793	12
$70-4$	51	4	$230.70($ A)(4)	Vince Baclawski, NEMA Daniel Buuck, NAHB	Multiple Notices for a Single Motion: Reject Second Revision No. 1004	13
$70-5$	91	10	240.2	Christel Hunter, General Cable Corporation	Accept Public Comment No. 1136	14
$70-6$	13	5	$250.35(B)$	Alfio Torrisi	Accept Public Comment No. 741	15
$70-7$	112	5	$250.122(B)$	Joseph Andre, JFA Consulting	Reject an Identifiable Part of Second Revision No. 1223	20
$70-8$	3	3	$300.5(\mathrm{D)(3)}$	Marcelo Hirschler, GBH International	Accept Public Comment No. 1219	21
$70-9$	46	6	$310.15(B)(3)$	Phil Simmons, Simmons Electrical Services	Accept Public Comment No. 1043	22
$70-10$	74	6	$310.15(B)(3)$	David Brender, Copper Development Association	Accept Public Comment No. 583	25

70-11	30	6	310.15(B)(3)	Travis Lindsey, TLC Services Inc.	Accept Public Comment No. 1401	28
70-12	28 56	6	310.15(B)(3)	David Brender, Copper Development Association Stephen Shull, Empire District Electric Co.	Multiple Notices for a Single Motion: Accept Public Comment No. 589 Accept Public Comment No. 320	31
70-13	77	8	370.80	Frederic Hartwell, Hartwell Electrical Services, Inc.	Reject Second Revision No. 2110	34
70-14	49	11	430.22(G)	Vince Baclawski, NEMA	Accept Public Comment No. 834	36
70-15	$\begin{aligned} & 102 \\ & 113 \\ & 134 \end{aligned}$	7	336.10	Richard Holub, The DuPont Company; Gary Savage, Prysmian Group; James Dollard, IBEW Local Union 98	Multiple Notices for a Single Motion: Reject an Identifiable Part of Second Revision No. 1808	38
70-16	100 89	14	501.10(A)(1)	Richard Holub, The DuPont Company, Inc. Gary Savage, Prysmian Group	Related Motions: Accept Committee Comment No. 3902 and Reject Second Correlating Revision No. 3	39
70-17	88	14	501.10(A)(2)	Gary Savage, Prysmian Group	Reject Second Correlating Revision No. 90	41
70-18	101 93	14	505.15(B)(1)	Richard Holub, The DuPont Company, Inc. Gary Savage, Prysmian Group	Related Motions: Accept Committee Comment No. 3906 and Reject an Identifiable Part of Second Correlating Revision No. 94	42
70-19	6	15	525.2	Marcelo Hirschler, GBH International	Accept Public Comment No. 806	43

70-20	20	3	590.4(J)	James Dollard, IBEW	Reject Second Revision No. 607	44
70-21	10	18	600.33(A)	Terry Peters, SPI	Reject Second Revision No. 5124, Including any Related Portions of First Revision No. 5139	45
70-22	8	18	600.33(A)	David Kiddoo, CCCA	Reject an Identifiable Part of Second Revision No. 5124	48
70-23	9	18	600.33(A)	David Kiddoo, CCCA	Reject an Identifiable Part of Second Revision No. 5124, Including any Related Portions of First Revision No. 5139	50
70-24	96	12	625.17(A)	Sean Lui, Tesla Motors	Accept Public Comment No. 1588	52
70-25	131 111 124 130	12	625.17(B)	Jason France, ClipperCreek Inc; Sean Lui, Tesla Motors; Alec Brooks, AeroVironment Inc; Craig Rodine, Chargepoint Inc.	Multiple Notices for a Single Motion: Accept Public Comment No. 1719 Accept Public Comment No. 1509 Accept Public Comment No. 1097 Accept Public Comment No. 1461	53
70-26	115 139	12	625.44(A)	Jason France, ClipperCreek Inc; Sean Lui, Tesla Motors;	Multiple Notices for a Single Motion:Accept Public Comment No. 1075 Accept Public Comment No. 1722	54

	21			Alec Brooks, AeroVironment Inc	Accept Public Comment No. 1534	
70-27	42	12	646.3(B)	Stanley Kaufman, CableSafe, Inc./OFS	Accept an Identifiable Part of Public Comment No. 46	55
70-28	$\begin{aligned} & \hline 60 \\ & 65 \end{aligned}$	17	680.14	Phil Simmons, Simmons Electrical Services Paul Abernathy, McKinney, TX	Multiple Notices for a Single Motion: Reject Second Correlating Revision No. 43	56
70-29	135	4	691.1	Roger McDaniel, Georgia Power Company/Southern Company	Accept an Identifiable Part of Public Comment No. 1711	57
70-30	136	4	691.4	Roger McDaniel, Georgia Power Company/Southern Company	Reject Second Correlating Revision No. 112	58
70-31	137	4	691.6	Roger McDaniel, Georgia Power Company/Southern Company	Reject Second Revision No. 981	59
70-32	138	4	691.7	Roger McDaniel, Georgia Power Company/Southern Company	Reject Second Revision No. 982	60
70-33	140	4	691.8	Roger McDaniel, Georgia Power Company/Southern Company	Reject Second Revision No. 983	61
70-34	125	4	Definition: Intentionally Islanded System. (705.2)	Roger McDaniel, Georgia Power Company/ Southern Company	Reject Second Revision No. 988	62
70-35	121	4	Definition: Island Interconnection Device (IID). (705.2)	Roger McDaniel, Georgia Power Company/ Southern Company	Reject Second Revision No. 989	63
70-36	127	4	$705.150-705.170$	Roger McDaniel, Georgia Power Company/ Southern Company	Reject Second Correlating Revision No. 116	64

$70-37$	82	4	Article 710	Timothy Croushore, FirstEnergy	Reject Second Revision No. 987, Including any Related Portions of First Revision No. 1045	66
$70-38$	141	13	Article 712	Roger McDaniel, Georgia Power Company/ Southern Company	Reject Second Revision No. 3627	68
$70-39$	79	3	725.144	Jeff Silveira, BICSI	Reject Second Revision No. 611	74
$70-40$	84	3	725.179	Jeff Silveira, BICSI	Reject an Identifiable Part of Second Revision No. 615	77
$70-41$	12	16	770.24	David Kiddoo, CCCA	Accept Public Comment No. 73	78
$70-42$	76	16	840.160	Joel Goergen, Cisco Systems, Inc.	Accept an identifiable part of Public Comment No. 1262	79
$70-43$	105	16	Part VI., 840.160	Jeff Silveira, BICSI; Tony Obrien, Cisco Systems 85		

Motion Seq \# 70-1: Jack Wells and John Goodsell, both from the Arc Fault Circuit Interrupter Wiring Device Joint Research and Development Consortium

Motion Seq\#	Certified Amending Motion: Accept an Identifiable Part of Committee Comment 19002
70-1	Recommended Text if Motion Passes: 210.12 (A) Dwelling Units. All 120 -volt, single-phase, 15 - and 20-ampere branch circuits supplying outlets or devices installed in dwelling unit kitchens, family rooms, dining rooms, living rooms, parlors, libraries, dens, bedrooms, sunrooms, recreation rooms, closets, hallways, laundry areas, or similar rooms or areas shall be protected by any of the means described in 210.12(A)(1) through (6): (1) A listed combination-type arc-fault circuit interrupter, installed to provide protection of the entire branch circuit (2) A listed branch/feeder-type AFCI installed at the origin of the branch-circuit in combination with a listed outlet branch-circuit type arc-fault circuit interrupter installed at the first outlet box on the branch circuit. The first outlet box in the branch circuit shall be marked to indicate that it is the first outlet of the circuit. (3) A listed supplemental arc protection circuit breaker installed at the origin of the branch circuit in combination with a listed outlet branch-circuit type arc-fault circuit interrupter installed at the first outlet box on the branch circuit where all of the following conditions are met: a. The branch-circuit wiring shall be continuous from the branch-circuit overcurrent device to the outlet branch-circuit arc-fault circuit interrupter. b. The maximum length of the branch-circuit wiring from the branch-circuit overcurrent device to the first outlet shall not exceed $15.2 \mathrm{~m}(50 \mathrm{ft})$ for a 14 AWG conductor or $21.3 \mathrm{~m}(70 \mathrm{ft})$ for a 12 AWG conductor. c. The first outlet box in the branch circuit shall be marked to indicate that it is the first outlet of the circuit. (4) A listed outlet branch-circuit type arc-fault circuit interrupter installed at the first outlet on the branch circuit in combination with a listed branchcircuit overcurrent protective device where all of the following conditions are met: a. The branch-circuit wiring shall be continuous from the branch-circuit overcurrent device to the outlet branch-circuit arc-fault circuit interrupter. b. The maximum length of the branch-circuit wiring from the branch-circuit overcurrent device to the first outlet shall not exceed $15.2 \mathrm{~m}(50 \mathrm{ft})$ for a 14 AWG conductor or $21.3 \mathrm{~m}(70 \mathrm{ft})$ for a 12 AWG conductor. c. The first outlet box in the branch circuit shall be marked to indicate that it is the first outlet of the circuit. eembination-type AFCI and shall be listed as such. (5) If RMC, IMC, EMT, Type MC, or steel-armored Type AC cables meeting the requirements of 250.118 , metal wireways, metal auxiliary gutters, and metal outlet and junction boxes are installed for the portion of the branch circuit between the branch-circuit overcurrent device and the first outlet, it shall be permitted to install a listed outlet branch-circuit type AFCI at the first outlet to provide protection for the remaining portion of the branch circuit. (6) Where a listed metal or nonmetallic conduit or tubing or Type MC cable is encased in not less than 50 mm (2 in.) of concrete for the portion of the branch circuit between the branch-circuit overcurrent device and the first outlet, it shall be permitted to install a listed outlet branch-circuit type AFCI at the first outlet to provide protection for the remaining portion of the branch circuit. Exception: Where an individual branch circuit to a fire alarm system installed in accordance with 760.41 (B) or 760.121 (B) is installed in RMC, IMC, EMT, or steel-sheathed cable, Type AC or Type MC, meeting the requirements of 250.118 , with metal outlet and junction boxes, AFCI protection shall be permitted to be omitted.

Informational Note No. 1: For information on combination-type and branch/feeder-type arc-fault circuit interrupters, see UL 1699-2011, Standard for Arc-Fault Circuit Interrupters. For information on outlet branch-circuit type arc-fault circuit interupters, see UL Subject 1699A, Outline of Investigation for Outlet Branch Circuit Arc-Fault Circuit-Interrupters. For information on system combination AFCIs, see UL Subject 1699C, Outline of Investigation for System Combination Arc-Fault Circuit Interrupters.
Informational Note No. 2: See 29.6.3(5) of NFPA 72-2013, National Fire Alarm and Signaling Code, for information related to secondary powersupply requirements for smoke alarms installed in dwelling units.
Informational Note No. 3: See 760.41(B) and 760.121(B) for power-supply requirements for fire alarm systems.

Recommended Text if Motion Fails:

210.12

(A) Dwelling Units.

All 120-volt, single-phase, 15- and 20-ampere branch circuits supplying outlets or devices installed in dwelling unit kitchens, family rooms, dining rooms, living rooms, parlors, libraries, dens, bedrooms, sunrooms, recreation rooms, closets, hallways, laundry areas, or similar rooms or areas shall be protected by any of the means described in 210.12(A)(1) through (6):
(1) A listed combination-type arc-fault circuit interrupter, installed to provide protection of the entire branch circuit
(2) A listed branch/feeder-type AFCI installed at the origin of the branch-circuit in combination with a listed outlet branch-circuit type arc-fault circuit interrupter installed at the first outlet box on the branch circuit. The first outlet box in the branch circuit shall be marked to indicate that it is the first outlet of the circuit.
(3) A listed supplemental arc protection circuit breaker installed at the origin of the branch circuit in combination with a listed outlet branch-circuit type arc-fault circuit interrupter installed at the first outlet box on the branch circuit where all of the following conditions are met:
a. The branch-circuit wiring shall be continuous from the branch-circuit overcurrent device to the outlet branch-circuit arc-fault circuit interrupter.
b. The maximum length of the branch-circuit wiring from the branch-circuit overcurrent device to the first outlet shall not exceed $15.2 \mathrm{~m}(50 \mathrm{ft})$ for a 14 AWG conductor or $21.3 \mathrm{~m}(70 \mathrm{ft})$ for a 12 AWG conductor.
c. The first outlet box in the branch circuit shall be marked to indicate that it is the first outlet of the circuit.
(4) A listed outlet branch-circuit type arc-fault circuit interrupter installed at the first outlet on the branch circuit in combination with a listed branchcircuit overcurrent protective device where all of the following conditions are met:
a. The branch-circuit wiring shall be continuous from the branch-circuit overcurrent device to the outlet branch-circuit arc-fault circuit interrupter.
b. The maximum length of the branch-circuit wiring from the branch-circuit overcurrent device to the first outlet shall not exceed $15.2 \mathrm{~m}(50 \mathrm{ft})$ for a 14 AWG conductor or $21.3 \mathrm{~m}(70 \mathrm{ft})$ for a 12 AWG conductor.
c. The first outlet box in the branch circuit shall be marked to indicate that it is the first outlet of the circuit.
d. The combination of the branch-circuit overcurrent device and outlet branch-circuit AFCI shall be identified as meeting the requirements for a system combination-type AFCI and shall be listed as such.
(5) If RMC, IMC, EMT, Type MC, or steel-armored Type AC cables meeting the requirements of 250.118 , metal wireways, metal auxiliary gutters, and metal outlet and junction boxes are installed for the portion of the branch circuit between the branch-circuit overcurrent device and the first outlet, it shall be permitted to install a listed outlet branch-circuit type AFCI at the first outlet to provide protection for the remaining portion of the branch circuit.
(6) Where a listed metal or nonmetallic conduit or tubing or Type MC cable is encased in not less than 50 mm (2 in.) of concrete for the portion of the branch circuit between the branch-circuit overcurrent device and the first outlet, it shall be permitted to install a listed outlet branch-circuit type AFCI at the first outlet to provide protection for the remaining portion of the branch circuit.
Exception: Where an individual branch circuit to a fire alarm system installed in accordance with 760.41 (B) or 760.121 (B) is installed in RMC, IMC, EMT, or steel-sheathed cable, Type AC or Type MC, meeting the requirements of 250.118 , with metal outlet and junction boxes, AFCI protection shall be permitted to be omitted.

Informational Note No. 1: For information on combination-type and branch/feeder-type arc-fault circuit interrupters, see UL 1699-2011, Standard for

Investigation for Outlet Branch Circuit Arc-Fault Circuit-Interrupters. For information on system combination AFCIs, see UL Subject 1699C, Outline of Investigation for System Combination Arc-Fault Circuit Interrupters.
Informational Note No. 2: See 29.6.3(5) of NFPA 72-2013, National Fire Alarm and Signaling Code, for information related to secondary powersupply requirements for smoke alarms installed in dwelling units.
Informational Note No. 3: See 760.41 (B) and 760.121 (B) for power-supply requirements for fire alarm systems.

Motion Seq \# 70-2: Howard Herndon, Southwest Electritech Services LLC.

Motion Seq\#	Certified Amending Motion: Accept Public Comment No. 1134
70-2	Recommended Text if Motion Passes: 225.27 Raceway Seal. Where a raceway enters a building or structure from outside-an underground distribution system, it shall be sealed in accordance with 300.5(G). Spare or unused raceways shall also be sealed. Sealants shall be identified for use with cable insulation, conductor insulation, bare conductor, shield, or and other components.
	Recommended Text if Motion Fails: 225.27 Raceway Seal. Where a raceway enters a building or structure from outside, it shall be sealed. Spare or unused raceways shall also be sealed. Sealants shall be identified for use with cable insulation, conductor insulation, bare conductor, shield, or other components.

Motion Seq \# 70-3: John Masarick, Independent Electrical Contractors Inc.
Certified Amending Motion: Accept an Identifiable Part of Public Comment No. 793

Motion Seq\#	Certified Amending Motion: Accept an Identifiable Part of Public Comment No. 793
$70-3$	Recommended Text if Motion Passes: $225.30 \ldots$.
	Recommended Text if Motion Fails: $225.30 \ldots$.

Motion Seq \# 70-4: Vince Baclawski, NEMA and Daniel Buuck, NAHB
Certified Amending Motion: Reject Second Revision No. 1004

Motion Seq\#	Certified Amending Motion: Reject Second Revision No. 1004
70-4	Recommended Text if Motion Passes: 230.70(A)(4) Service Disconnects on One-and Two Family Dwellings. Where installed on one family and two family dwellings, the service discomnecting means or remote-controlled device in accordance with $230.70(\mathrm{~A})(3)$ shall be installed outside the structure at the meter location, or at the nearest point of entrance of the service conductors. This requirement shall take effeet on July 1, 2020.
	Recommended Text if Motion Fails: 230.70(A)(4) Service Disconnects on One- and Two-Family Dwellings. Where installed on one-family and two-family dwellings, the service disconnecting means or remote-controlled device in accordance with $230.70(\mathrm{~A})(3)$ shall be installed outside the structure at the meter location, or at the nearest point of entrance of the service conductors. This requirement shall take effect on July 1, 2020.

Motion Seq \# 70-5: Christel Hunter, General Cable Corporation
Certified Amending Motion: Accept Public Comment No. 1136

Motion Seq\#	Certified Amending Motion: Accept Public Comment No. 1136

Recommended Text if Motion Passes:

240.2 Definitions. ...

Tap Conductor. A conductor As used in this article, a tap conductor is defined as a conductor, other than a service conductor, that has overcurrent protection ahead of its point of supply that exceeds the value permitted for similar conductors that are protected as described elsewhere in 240.4.
Recommended Text if Motion Fails:
240.2 Definitions. ...

Tap Conductor. A conductor, other than a service conductor, that has overcurrent protection ahead of its point of supply that exceeds the value permitted for similar conductors that are protected as described elsewhere in 240.4.

Motion Seq\#	Certified Amending Motion: Accept Public Comment No. 741
70-6	Recommended Text if Motion Passes: 250.35 (B) Nonseparately Derived System. If the (1) When a generator is installed as a nonseparately derived system, and overcurrent protection is not integral with the generator assembly, a supply-side bonding jumper shall be installed between the generator equipment grounding terminal and the equipment grounding terminal, bar, or bus of the disconnecting mean(s). It shall be sized in accordance with 250.102(C) based on the size of the conductors supplied by the generator. (2) A non-separately derived generator shall not supply more than one transfer switch (TS) under the following conditions a. One TS supplying a Service disconnect and one TS supplying feeder conductors that are supplied from other service entrance conductors. b. Two or more feeders supplied from different sets of service entrance conductors, with a TS suppling each feeder c. Two or more feeders that are each individually supplied from two different separately derived sources, with a TS suppling each feeder. *Note: Motion includes 4 drawings*
	Recommended Text if Motion Fails: 250.35 (B) Nonseparately Derived System. If the generator is installed as a nonseparately derived system, and overcurrent protection is not integral with the generator assembly, a supply-side bonding jumper shall be installed between the generator equipment grounding terminal and the equipment grounding terminal, bar, or bus of the disconnecting mean(s). It shall be sized in accordance with 250.102 (C) based on the size of the conductors supplied by the generator.

Parallel path anis connection on lons side
Two service entrance conductors
service
meutral
service
MDP

Feeder
panel Syplieis
FROM NORMAL AND
STAWDisy Power

Feeder
panel Suppliel
Fresm Normal And STAWDisy place
serurce Menteal
service MDP

MATM Zondring Jumper (mBS)
System Bombing Jumper (SBJ)
Nentral conductor (N)
parallel path and connection on load side
Two Transformers (Separately derived)

Posted: May 17, 2016
one service loss/broken nemtrallor working on

Parallel pat ans connection on ions side
One Service, two service entrance conductors

Motion Seq \# 70-7: Joseph Andre, JFA Consulting
Certified Amending Motion: Reject an Identifiable Part of Second Revision No. 1223
Motion
Seq\#

Recommended Text if Motion Passes:

250.122. ...

(B) Increased in Size. If ungrounded conductors are increased in size for any reason from the minimum size that has sufficient ampacity for the intended installation before the application of any adjustment or correction factor(s) to account for voltage drop, wire-type equipment grounding conductors shall be increased in size. The increase in size shall be at least in the same proportion as the increase in the size of the ungrounded conductors using their circular mil area.

Recommended Text if Motion Fails:

250.122. ...
(B) Increased in Size. If ungrounded conductors are increased in size to account for voltage drop, wire-type equipment grounding conductors shall be increased in size. The increase in size shall be at least in the same proportion as the increase in the size of the ungrounded conductors using their circular mil area.

Motion Seq \# 70-8: Marcelo Hirschler, GBH International
Certified Amending Motion: Accept Public Comment No. 1219

Motion	Certified Amending Motion: Accept Public Comment No. 1219
Seq\#	

Recommended Text if Motion Passes:

$300.5(\mathrm{D})(3)$ Service Conductors. Underground service conductors and feeders that are not encased in concrete and that are buried 450 mm (18 in.) or more below grade shall have their location identified by a warning ribbon that is placed in the trench at least 300 mm (12 in .) above the underground installation.

Recommended Text if Motion Fails:

300.5(D)(3) Service Conductors. Underground service conductors that are not encased in concrete and that are buried 450 mm (18 in.) or more below grade shall have their location identified by a warning ribbon that is placed in the trench at least 300 mm (12 in .) above the underground installation.

Motion Seq\#	Certified Amending Motion: Accept Public Comment No. 1043
70-9	Recommended Text if Motion Passes:
	310.15(B). ...
	(3) Adjustment Facto
	(a) More than Three Current-Carrying Conductors. Where the number of current-carrying conductors in a raceway or cable exceeds three, or where single conductors or multiconductor cables are installed without maintaining spacing for a continuous length longer than 600 mm (24 in .) and are not installed in raceways, the allowable ampacity of each conductor shall be reduced as shown in Table 310.15(B)(3)(a). Section 310.15(A)(2) exception
	shall not apply. Each current-carrying conductor of a paralleled set of conductors shall be counted as a current-carrying conductor. Where conductors of different systems, as provided in 300.3, are installed in a common raceway or cable, the adjustment factors shown in Table
	310.15 (B)(3)(a) shall apply only to the number of power and lighting conductors (Articles 210, 215,220, and 230).
	Informational Note No. 1: See Annex B for adjustment factors for more than three current-carrying conductors in a raceway or cable with load diversity.
	Informational Note No. 2: See 366.23 for adjustment factors for conductors and ampacity for bare copper and aluminum bars in auxiliary gutters and 376.22(B) for adjustment factors for conductors in metal wireways.
	(2) Adjustment factors shall not apply to conductors in raceways having a length not exceeding 600 mm (24 in .). (3) Adjustment factors shall not apply to underground conductors entering or leaving an outdoor trench if those conductors have physical protection in
	the form of rigid metal conduit, intermediate metal conduit, rigid polyvinyl chloride conduit (PVC), or reinforced thermosetting resin conduit (RTRC)
	having a length not exceeding $3.05 \mathrm{~m}(10 \mathrm{ft})$, and if the number of conductors does not exceed four. (4) Adjustment factors shall not apply to Type AC cable or to Type MC cable under the following conditions:
	a. The cables do not have an overall outer jacket.
	b. Each cable has not more than three current-carrying conductors.
	c. The conductors are 12 AWG copper.
	d. Not more than 20 current-carrying conductors are instaled Exeeption to (4): If eables meeting the requirements in $310.15(\mathrm{~B})(3)(4)$ a through c with more than 20 eurrent earrying conductors are installed longer than 600 mm (24 in .) without maintaining spacing, are stacked, or are supported on bridle rings, a 60 percent adjustment factor shall be applied.
	Exception: A 60 percent adjustment factor shall be applied if the current-carrying conductors in these cables that are stacked or bundled longer than
	600 mm (24 in .) without maintaining spacing exceeds 20. (5) An adjustment factor of 60 percent shall be applied to Type AC cable or Type MC cable under the following conditions:
	a. The cables do not have an overall outer jacket.
	$\frac{\text { b. The number of current carrying conductors exceeds } 20 .}{}$. ${ }^{\text {a }}$.
	c. The cables are stacked or bundled longer that 600 mm (24 in .) without spacing being maintained.
	Table 310.15(B)(3)(a) Adjustment Factors for More Than Three Current-Carrying Conductors

```
l}\begin{array}{l}{\mathrm{ Number of }}\\{\mathrm{ Conductors }}
```

4-6 80
7-9 70

10-20 50
21-30 45
31-40 40
41 and above 35
${ }^{1}$ Number of conductors is the total number of conductors in the raceway or cable, including spare conductors. The count shall be adjusted in accordance with $310.15(\mathrm{~B})(5)$ and (6). The count shall not include conductors that are connected to electrical components that cannot be simultaneously energized.
(b) Raceway Spacing. Spacing between raceways shall be maintained.
(c) Raceways and Cables Exposed to Sunlight on Rooftops. Where raceways or cables are exposed to direct sunlight on or above rooftops, raceways or eables shall be installed a minimum distance above the roof to the bottom of the raceway or cable of 23 mm (78 in .). Where the distance above the roof to the bettom of the raceway is less than 23 mm (78 im .), a temperature adder of $33^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right)$ the adjustments shown in Table 3.10 .15 (B)(3)(c) shall be added to the outdoor temperature to determine the applicable ambient temperature for application of the correction factors in Table
310.15(B)(2)(a) or Table 310.15(B)(2)(b).

Table 310.15(B)(3)(c) Ambient Temperature Adjustment for Raceways or Cables Exposed to Sunlight on or Above Rooftops

Distance Above Roof to Bottom of Raceway or Cable	Temperature Adder	
	$\underline{{ }^{\circ} \mathrm{C}}$	$\underline{\mathrm{F}}$
On roof $0-13 \mathrm{~mm}(0-1 / 2 \mathrm{in})$.	$\underline{33}$	$\underline{60}$
Above roof $13 \mathrm{~mm}(1 / 2 \mathrm{in} .-31 / 2 \mathrm{in})$.	$\underline{22}$	$\underline{40}$
Above $90 \mathrm{~mm}-300 \mathrm{~mm}(31 / 2 \mathrm{in}-12 \mathrm{in})$.	$\underline{17}$	$\underline{30}$
Above $300 \mathrm{~mm}-900 \mathrm{~mm}(12 \mathrm{in} .-36 \mathrm{in})$.	$\underline{14}$	$\underline{25}$

Exception: Type XHHW-2 insulated conductors shall not be subject to this ampacity adjustment.
Informational Note: One source for the ambient temperatures in various locations is the ASHRAE Handbook - Fundamentals.

Recommended Text if Motion Fails:

310.15(B). ...
(3) Adjustment Factors.
(a) More than Three Current-Carrying Conductors. Where the number of current-carrying conductors in a raceway or cable exceeds three, or where single conductors or multiconductor cables are installed without maintaining spacing for a continuous length longer than 600 mm (24 in .) and are not installed in raceways, the allowable ampacity of each conductor shall be reduced as shown in Table 310.15(B)(3)(a). Each current-carrying conductor of a paralleled set of conductors shall be counted as a current-carrying conductor.
Where conductors of different systems, as provided in 300.3, are installed in a common raceway or cable, the adjustment factors shown in Table 310.15(B)(3)(a) shall apply only to the number of power and lighting conductors (Articles 210, 215,220, and 230).

Informational Note No. 1: See Annex B for adjustment factors for more than three current-carrying conductors in a raceway or cable with load diversity.
Informational Note No. 2: See 366.23 for adjustment factors for conductors and ampacity for bare copper and aluminum bars in auxiliary gutters and 376.22(B) for adjustment factors for conductors in metal wireways.
(1) Where conductors are installed in cable trays, the provisions of 392.80 shall apply.
(2) Adjustment factors shall not apply to conductors in raceways having a length not exceeding 600 mm (24 in .).
(3) Adjustment factors shall not apply to underground conductors entering or leaving an outdoor trench if those conductors have physical protection in the form of rigid metal conduit, intermediate metal conduit, rigid polyvinyl chloride conduit (PVC), or reinforced thermosetting resin conduit (RTRC) having a length not exceeding $3.05 \mathrm{~m}(10 \mathrm{ft})$, and if the number of conductors does not exceed four.
(4) Adjustment factors shall not apply to Type AC cable or to Type MC cable under the following conditions:
a. The cables do not have an overall outer jacket.
b. Each cable has not more than three current-carrying conductors.
c. The conductors are 12 AWG copper.
d. Not more than 20 current-carrying conductors are installed without maintaining spacing, are stacked, or are supported on "bridle rings." Exception to (4): If cables meeting the requirements in $310.15(\mathrm{~B})(3)(4)$ a through c with more than 20 current-carrying conductors are installed longer
Table 310.15(B)(3)(a) Adjustment Factors for More Than Three Current-Carrying Conductors

Number of
Conductors 1

4-6 80

7-9 70
$10-20$ 50
21-30 45
31-40 40
41 and above 35
${ }^{1}$ Number of conductors is the total number of conductors in the raceway or cable, including spare conductors. The count shall be adjusted in accordance with $310.15(\mathrm{~B})(5)$ and (6). The count shall not include conductors that are connected to electrical components that cannot be simultaneously energized.
(b) Raceway Spacing. Spacing between raceways shall be maintained.
(c) Raceways and Cables Exposed to Sunlight on Rooftops. Where raceways or cables are exposed to direct sunlight on or above rooftops, raceways or cables shall be installed a minimum distance above the roof to the bottom of the raceway or cable of $23 \mathrm{~mm}(7 / 8 \mathrm{in}$.). Where the distance above the roof to the bottom of the raceway is less than $23 \mathrm{~mm}\left(7 / 8 \mathrm{in}\right.$.), a temperature adder of $33^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right)$ shall be added to the outdoor temperature to determine the applicable ambient temperature for application of the correction factors in Table 310.15(B)(2)(a) or Table 310.15(B)(2)(b).
Exception: Type XHHW-2 insulated conductors shall not be subject to this ampacity adjustment.
Informational Note: One source for the ambient temperatures in various locations is the ASHRAE Handbook - Fundamentals.

$\begin{array}{\|c} \text { Motion } \\ \text { Seq\# } \end{array}$	Certified Amending Motion: Accept an Identifiable Part of Public Comment No. 583
70-10	Recommended Text if Motion Passes: 310.15(B). (3) Adjustment Factors. (a) More than Three Current-Carrying Conductors. Where the number of current-carrying conductors in a raceway or cable exceeds three, or where single conductors or multiconductor cables are installed without maintaining spacing for a continuous length longer than 600 mm (24 in .) and are not installed in raceways, the allowable ampacity of each conductor shall be reduced as shown in Table 310.15(B)(3)(a). Section 310.15(A)(2) exception shall not apply. Each current-carrying conductor of a paralleled set of conductors shall be counted as a current-carrying conductor. Where conductors of different systems, as provided in 300.3 , are installed in a common raceway or cable, the adjustment factors shown in Table 310.15(B)(3)(a) shall apply only to the number of power and lighting conductors (Articles 210, 215,220, and 230). Informational Note No. 1: See Annex B for adjustment factors for more than three current-carrying conductors in a raceway or cable with load diversity. Informational Note No. 2: See 366.23 for adjustment factors for conductors and ampacity for bare copper and aluminum bars in auxiliary gutters and 376.22(B) for adjustment factors for conductors in metal wireways. (1) Where conductors are installed in cable trays, the provisions of 392.80 shall apply. (2) Adjustment factors shall not apply to conductors in raceways having a length not exceeding 600 mm (24 in.). (3) Adjustment factors shall not apply to underground conductors entering or leaving an outdoor trench if those conductors have physical protection in the form of rigid metal conduit, intermediate metal conduit, rigid polyvinyl chloride conduit (PVC), or reinforced thermosetting resin conduit (RTRC) having a length not exceeding $3.05 \mathrm{~m}(10 \mathrm{ft})$, and if the number of conductors does not exceed four. (4) Adjustment factors shall not apply to Type AC cable or to Type MC cable under the following conditions: a. The cables do not have an overall outer jacket. b. Each cable has not more than three current-carrying conductors. c. The conductors are 12 AWG copper. d. Not more than 20 current-carrying conductors are installed without maintaining spacing, are stacked, or are supported on "bridle rings." Exception to (4): If cables meeting the requirements in 310.15 (B)(3)(4)a through c with more than 20 current carrying conductors are installed longer than 600 mm (24 in .) without maintaining spacing, are stacked, or are supported on bridle rings, a 60 percent adjustment factor shall be applied. Exception: A 60 percent adjustment factor shall be applied if the current-carrying conductors in these cables that are stacked or bundled longer than 600 mm (24 in.) without maintaining spacing exceeds 20 . (5) An adjustment factor of 60 percent shall be applied to Type AC cable or Type MC cable under the following conditions: a. The cables do not have an overall outer jacket. b. The number of current carrying conductors exceeds 20. c. The cables are stacked or bundled longer that 600 mm (24 in .) without spacing being maintained. Table 310.15(B)(3)(a) Adjustment Factors for More Than Three Current-Carrying Conductors

Number of Conductors ${ }^{1}$

$4-6$	80
$7-9$	70
$10-20$	50
$21-30$	45
$31-40$	40
and above	35

${ }^{1}$ Number of conductors is the total number of conductors in the raceway or cable, including spare conductors. The count shall be adjusted in accordance with $310.15(B)(5)$ and (6). The count shall not include conductors that are connected to electrical components that cannot be simultaneously energized.
(b) Raceway Spacing. Spacing between raceways shall be maintained.
(c) Raceways and Cables Exposed to Sunlight on Rooftops. Where raceways or cables are exposed to direct sunlight on or above rooftops, the adjustments shown in Table $310.15(\mathrm{~B})(3)(\mathrm{c})$ raceways or cables shall be installed a minimum distance above the roof to the bottom of the raceway or cable of 23 mm ($7 / 8 \mathrm{in}$.). Where the distance above the roof to the bottom of the raceway is less than $23 \mathrm{~mm}\left(7 / 8 \mathrm{in}\right.$.), a temperature adder of $33^{\circ} \mathrm{C}$ $\left(60^{\circ} \mathrm{F}\right)$ shall be added to the outdoor temperature to determine the applicable ambient temperature for application of the correction factors in Table $310.15(\mathrm{~B})(2)(\mathrm{a})$ or Table $310.15(\mathrm{~B})(2)(\mathrm{b})$.
Exception: Type XHHW-2 insulated conductors shall not be subject to this ampacity adjustment.
Informational Note: One source for the ambient temperatures in various locations is the ASHRAE Handbook - Fundamentals.

Recommended Text if Motion Fails:

310.15(B). ...
(3) Adjustment Factors.
(a) More than Three Current-Carrying Conductors. Where the number of current-carrying conductors in a raceway or cable exceeds three, or where single conductors or multiconductor cables are installed without maintaining spacing for a continuous length longer than 600 mm (24 in .) and are not installed in raceways, the allowable ampacity of each conductor shall be reduced as shown in Table 310.15(B)(3)(a). Each current-carrying conductor of a paralleled set of conductors shall be counted as a current-carrying conductor.
Where conductors of different systems, as provided in 300.3 , are installed in a common raceway or cable, the adjustment factors shown in Table $310.15(\mathrm{~B})(3)(\mathrm{a})$ shall apply only to the number of power and lighting conductors (Articles 210, 215,220, and 230).
Informational Note No. 1: See Annex B for adjustment factors for more than three current-carrying conductors in a raceway or cable with load diversity.
Informational Note No. 2: See 366.23 for adjustment factors for conductors and ampacity for bare copper and aluminum bars in auxiliary gutters and 376.22(B) for adjustment factors for conductors in metal wireways.
(1) Where conductors are installed in cable trays, the provisions of 392.80 shall apply.
(2) Adjustment factors shall not apply to conductors in raceways having a length not exceeding 600 mm (24 in .).
(3) Adjustment factors shall not apply to underground conductors entering or leaving an outdoor trench if those conductors have physical protection in the form of rigid metal conduit, intermediate metal conduit, rigid polyvinyl chloride conduit (PVC), or reinforced thermosetting resin conduit (RTRC) having a length not exceeding $3.05 \mathrm{~m}(10 \mathrm{ft})$, and if the number of conductors does not exceed four.
(4) Adjustment factors shall not apply to Type AC cable or to Type MC cable under the following conditions:
a. The cables do not have an overall outer jacket.
b. Each cable has not more than three current-carrying conductors.
c. The conductors are 12 AWG copper.
d. Not more than 20 current-carrying conductors are installed without maintaining spacing, are stacked, or are supported on "bridle rings."

Exception to (4): If cables meeting the requirements in $310.15(\mathrm{~B})(3)(4)$ a through c with more than 20 current-carrying conductors are installed longer than 600 mm (24 in.) without maintaining spacing, are stacked, or are supported on bridle rings, a 60 percent adjustment factor shall be applied.
Table 310.15(B)(3)(a) Adjustment Factors for More Than Three Current-Carrying Conductors

Number of Conductors	
$4-6$	Percent of Values in Table 310.15(B)(16) Through Table 310.15(B)(19) as Adjusted for Ambient Temperature if Necessary
$7-9$	80
$10-20$	70
$21-30$	50
$31-40$	45
41 and above	40

${ }^{1}$ Number of conductors is the total number of conductors in the raceway or cable, including spare conductors. The count shall be adjusted in accordance with $310.15(\mathrm{~B})(5)$ and (6). The count shall not include conductors that are connected to electrical components that cannot be simultaneously energized.
(b) Raceway Spacing. Spacing between raceways shall be maintained.
(c) Raceways and Cables Exposed to Sunlight on Rooftops. Where raceways or cables are exposed to direct sunlight on or above rooftops, raceways or cables shall be installed a minimum distance above the roof to the bottom of the raceway or cable of $23 \mathrm{~mm}(7 / 8 \mathrm{in}$.). Where the distance above the roof to the bottom of the raceway is less than 23 mm (78 in .), a temperature adder of $33^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right.$) shall be added to the outdoor temperature to determine the applicable ambient temperature for application of the correction factors in Table 310.15(B)(2)(a) or Table 310.15(B)(2)(b).
Exception: Type XHHW-2 insulated conductors shall not be subject to this ampacity adjustment.
Informational Note: One source for the ambient temperatures in various locations is the ASHRAE Handbook - Fundamentals.

$\begin{gathered} \text { Motion } \\ \text { Seq" } \end{gathered}$	Certified Amending Motion: Accept Public Comment No. 1401
70-11	Recommended Text if Motion Passes: 310.15(B).... (3) Adjustment Factors. (a) More than Three Current-Carrying Conductors. Where the number of current-carrying conductors in a raceway or cable exceeds three, or where single conductors or multiconductor cables are installed without maintaining spacing for a continuous length longer than 600 mm (24 in .) and are not installed in raceways, the allowable ampacity of each conductor shall be reduced as shown in Table 310.15(B)(3)(a). Section 310.15(A)(2) exception shall not apply. Each current-carrying conductor of a paralleled set of conductors shall be counted as a current-carrying conductor. Where conductors of different systems, as provided in 300.3, are installed in a common raceway or cable, the adjustment factors shown in Table $310.15(\mathrm{~B})(3)$ (a) shall apply only to the number of power and lighting conductors (Articles 210, 215,220, and 230). Informational Note No. 1: See Annex B for adjustment factors for more than three current-carrying conductors in a raceway or cable with load diversity. Informational Note No. 2: See 366.23 for adjustment factors for conductors and ampacity for bare copper and aluminum bars in auxiliary gutters and 376.22(B) for adjustment factors for conductors in metal wireways. (1) Where conductors are installed in cable trays, the provisions of 392.80 shall apply. (2) Adjustment factors shall not apply to conductors in raceways having a length not exceeding 600 mm (24 in .). (3) Adjustment factors shall not apply to underground conductors entering or leaving an outdoor trench if those conductors have physical protection in the form of rigid metal conduit, intermediate metal conduit, rigid polyvinyl chloride conduit (PVC), or reinforced thermosetting resin conduit (RTRC) having a length not exceeding $3.05 \mathrm{~m}(10 \mathrm{ft})$, and if the number of conductors does not exceed four. (4) Adjustment factors shall not apply to Type AC cable or to Type MC cable under the following conditions: a. The cables do not have an overall outer jacket. b. Each cable has not more than three current-carrying conductors. c. The conductors are 12 AWG copper. d. Not more than 20 current-carrying conductors are installed without maintaining spacing, are stacked, or are supported on "bridle rings." Exception to (4): If cables meeting the requirements in 310.15 (B)(3)(4)a through c with more than 20 current-carrying conductors are installed longer than 600 mm (24 im .) without maintaining spacing, are stacked, or are supported on bridle rings, a 60 percent adjustment factor shall be applied. Exception: A 60 percent adjustment factor shall be applied if the current-carrying conductors in these cables that are stacked or bundled longer than 600 mm (24 in .) without maintaining spacing exceeds 20 . (5) An adjustment factor of 60 percent shall be applied to Type AC cable or Type MC cable under the following conditions: a. The cables do not have an overall outer jacket. b. The number of current carrying conductors exceeds 20. c. The cables are stacked or bundled longer that 600 mm (24 in .) without spacing being maintained. Table 310.15(B)(3)(a) Adjustment Factors for More Than Three Current-Carrying Conductors

Number of
Conductors ${ }^{1}$$\quad$ Percent of Values in Table 310.15(B)(16) Through Table 310.15(B)(19) as Adjusted for Ambient Temperature if Necessary

Conductors ${ }^{1}$ Percent of Values in Table 310.15(B)(16) Through Table 310.15(B)(19) as Adjusted for Ambient Temperature if Necessary

$4-6$	80
$7-9$	70
$10-20$	50
$21-30$	45
$31-40$	40
41 and above	35

${ }^{1}$ Number of conductors is the total number of conductors in the raceway or cable, including spare conductors. The count shall be adjusted in accordance with $310.15(\mathrm{~B})(5)$ and (6). The count shall not include conductors that are connected to electrical components that cannot be simultaneously energized.
(b) Raceway Spacing. Spacing between raceways shall be maintained.
(c) Raceways and Cables Exposed to Sunlight on Rooftops. Where raceways or cables are exposed to direct sunlight on or above rooftops, raceways or eables shall be installed a minimum distance above the roof to the bottom of the raceway or cable of 23 mm (78 in .). Where the distance above the roof to the bottom of the raceway is less than 23 mm (78 im .), a temperature adder of $33^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right)$ the adjustments shown in Table 3.10 .15 (B)(3)(c) shall be added to the outdoor temperature to determine the applicable ambient temperature for application of the correction factors in Table
310.15(B)(2)(a) or Table 310.15(B)(2)(b).

Exception: Type XHHW-2 insulated conductors shall not be subject to this ampacity adjustment.
Table 310.15(B)(3)(c) Ambient Temperature Adjustment for Raceways or Cables Exposed to Sunlight on or Above Rooftops

Distance Above Roof to Bottom of Raceway or Cable	Temperature Added	
	$\underline{ }{ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$
On roof $0-13 \mathrm{~mm}(0-1 / 2 \mathrm{in})$.	$\underline{33}$	$\underline{60}$
Above roof $13 \mathrm{~mm}(1 / 2$ in. $-31 / 2 \mathrm{in})$.	$\underline{22}$	$\underline{40}$
Above $90 \mathrm{~mm}-300 \mathrm{~mm}(31 / 2$ in -12 in. $)$	$\underline{17}$	$\underline{30}$
Above $300 \mathrm{~mm}-900 \mathrm{~mm}(12$ in. -36 in. $)$	$\underline{14}$	$\underline{25}$

Informational Note: One source for the ambient temperatures in various locations is the ASHRAE Handbook - Fundamentals.

Recommended Text if Motion Fails:

310.15(B)....
(3) Adjustment Factors.
(a) More than Three Current-Carrying Conductors. Where the number of current-carrying conductors in a raceway or cable exceeds three, or where single conductors or multiconductor cables are installed without maintaining spacing for a continuous length longer than 600 mm (24 in .) and are not installed in raceways, the allowable ampacity of each conductor shall be reduced as shown in Table 310.15(B)(3)(a). Each current-carrying conductor of a paralleled set of conductors shall be counted as a current-carrying conductor.
Where conductors of different systems, as provided in 300.3, are installed in a common raceway or cable, the adjustment factors shown in Table $310.15(\mathrm{~B})(3)(a)$ shall apply only to the number of power and lighting conductors (Articles 210, 215,220, and 230).

Informational Note No. 1: See Annex B for adjustment factors for more than three current-carrying conductors in a raceway or cable with load diversity.
Informational Note No. 2: See 366.23 for adjustment factors for conductors and ampacity for bare copper and aluminum bars in auxiliary gutters and 376.22(B) for adjustment factors for conductors in metal wireways.
(1) Where conductors are installed in cable trays, the provisions of 392.80 shall apply.
(2) Adjustment factors shall not apply to conductors in raceways having a length not exceeding 600 mm (24 in .).
(3) Adjustment factors shall not apply to underground conductors entering or leaving an outdoor trench if those conductors have physical protection in the form of rigid metal conduit, intermediate metal conduit, rigid polyvinyl chloride conduit (PVC), or reinforced thermosetting resin conduit (RTRC) having a length not exceeding $3.05 \mathrm{~m}(10 \mathrm{ft})$, and if the number of conductors does not exceed four.
(4) Adjustment factors shall not apply to Type AC cable or to Type MC cable under the following conditions:
a. The cables do not have an overall outer jacket.
b. Each cable has not more than three current-carrying conductors.
c. The conductors are 12 AWG copper.
d. Not more than 20 current-carrying conductors are installed without maintaining spacing, are stacked, or are supported on "bridle rings." Exception to (4): If cables meeting the requirements in $310.15(\mathrm{~B})(3)(4)$ a through c with more than 20 current-carrying conductors are installed longer than $600 \mathrm{~mm}(24 \mathrm{in}$.) without maintaining spacing, are stacked, or are supported on bridle rings, a 60 percent adjustment factor shall be applied.
Table 310.15(B)(3)(a) Adjustment Factors for More Than Three Current-Carrying Conductors
Number of
Conductors ${ }^{1}$
Percent of Values in Table 310.15(B)(16) Through Table $310.15(\mathrm{~B})(19)$ as Adjusted for Ambient Temperature if Necessary
4-6 80

7-9 70
$10-20 \quad 50$
21-30 45
31-40 40
41 and above 35
${ }^{1}$ Number of conductors is the total number of conductors in the raceway or cable, including spare conductors. The count shall be adjusted in accordance with $310.15(\mathrm{~B})(5)$ and (6). The count shall not include conductors that are connected to electrical components that cannot be simultaneously energized.
(b) Raceway Spacing. Spacing between raceways shall be maintained.
(c) Raceways and Cables Exposed to Sunlight on Rooftops. Where raceways or cables are exposed to direct sunlight on or above rooftops, raceways or cables shall be installed a minimum distance above the roof to the bottom of the raceway or cable of $23 \mathrm{~mm}(7 / 8 \mathrm{in}$.). Where the distance above the roof to the bottom of the raceway is less than $23 \mathrm{~mm}\left(7 / 8 \mathrm{in}\right.$.), a temperature adder of $33^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right)$ shall be added to the outdoor temperature to determine the applicable ambient temperature for application of the correction factors in Table 310.15(B)(2)(a) or Table 310.15(B)(2)(b).
Exception: Type XHHW-2 insulated conductors shall not be subject to this ampacity adjustment.
Informational Note: One source for the ambient temperatures in various locations is the ASHRAE Handbook - Fundamentals.

Motion Seq \# 70-12 David Brender, Copper Development Association and Stephen Shull, Empire District Electric Co.

Motion Seq\#	Certified Amending Motion: Accept Public Comment No. 589; Accept Public Comment No. 320
70-12	Recommended Text if Motion Passes: 310.15(B). ... (3) Adjustment Factors. (a) More than Three Current-Carrying Conductors. Where the number of current-carrying conductors in a raceway or cable exceeds three, or where single conductors or multiconductor cables are installed without maintaining spacing for a continuous length longer than 600 mm (24 in .) and are not installed in raceways, the allowable ampacity of each conductor shall be reduced as shown in Table 310.15(B)(3)(a). Section 310.15(A)(2) exception shall not apply. Each current-carrying conductor of a paralleled set of conductors shall be counted as a current-carrying conductor. Where conductors of different systems, as provided in 300.3, are installed in a common raceway or cable, the adjustment factors shown in Table $310.15(B)(3)(a)$ shall apply only to the number of power and lighting conductors (Articles 210, 215,220, and 230). Informational Note No. 1: See Annex B for adjustment factors for more than three current-carrying conductors in a raceway or cable with load diversity. Informational Note No. 2: See 366.23 for adjustment factors for conductors and ampacity for bare copper and aluminum bars in auxiliary gutters and 376.22(B) for adjustment factors for conductors in metal wireways. (1) Where conductors are installed in cable trays, the provisions of 392.80 shall apply. (2) Adjustment factors shall not apply to conductors in raceways having a length not exceeding 600 mm (24 in .). (3) Adjustment factors shall not apply to underground conductors entering or leaving an outdoor trench if those conductors have physical protection in the form of rigid metal conduit, intermediate metal conduit, rigid polyvinyl chloride conduit (PVC), or reinforced thermosetting resin conduit (RTRC) having a length not exceeding $3.05 \mathrm{~m}(10 \mathrm{ft})$, and if the number of conductors does not exceed four. (4) Adjustment factors shall not apply to Type AC cable or to Type MC cable under the following conditions: a. The cables do not have an overall outer jacket. b. Each cable has not more than three current-carrying conductors. c. The conductors are 12 AWG copper. d. Not more than 20 current-carrying conductors are installed without maintaining spacing, are stacked, or are supported on "bridle rings." Exception: A 60 percent adjustment factor shall be applied if the current-carrying conductors in these cables that are stacked or bundled longer than 600 mm (24 in .) without maintaining spacing exceeds 20. (5) An adjustment factor of 60 percent shall be applied to Type AC cable or Type MC cable under the following conditions: a. The cables do not have an overall outer jacket. b. The number of current carrying conductors exceeds 20. c. The cables are stacked or bundled longer that 600 mm (24 in .) without spacing being maintained. Table $310.15(\mathrm{~B})(3)(\mathrm{a})$ Adjustment Factors for More Than Three Current-Carrying Conductors

Number of Conductors ${ }^{1}$	Percent of Values in Table 310.15(B)(16) Through Table 310.15(B)(19) as Adjusted for Ambient Temperature if Necessary
$4-6$	80
$7-9$	70
$10-20$	50
$21-30$	45
$31-40$	40
41 and above	35

${ }^{1}$ Number of conductors is the total number of conductors in the raceway or cable, including spare conductors. The count shall be adjusted in accordance with $310.15(\mathrm{~B})(5)$ and (6). The count shall not include conductors that are connected to electrical components that cannot be simultaneously energized.
(b) Raceway Spacing. Spacing between raceways shall be maintained.
(c) Raceways and Cables Exposed to Sunlight on Rooftops. Where raceways or cables are exposed to direct sunlight on or above rooftops, the adjustments shown in Table $310.15(\mathrm{~B})(3)(\mathrm{c})$ raceways or cables shall be installed a minimum distance above the roof to the bottom of the raceway or cable of 23 mm ($7 / 8 \mathrm{in}$.). Where the distance above the roof to the bottom of the raceway is less than $23 \mathrm{~mm}\left(7 / 8 \mathrm{in}\right.$.), a temperature adder of $33^{\circ} \mathrm{C}$ $\left(60^{\circ} \mathrm{F}\right)$ shall be added to the outdoor temperature to determine the applicable ambient temperature for application of the correction factors in Table $310.15(\mathrm{~B})(2)(\mathrm{a})$ or Table $310.15(\mathrm{~B})(2)(\mathrm{b})$.
Exception: Type XHHW-2 insulated conductors shall not be subject to this ampacity adjustment.
Informational Note: One source for the ambient temperatures in various locations is the ASHRAE Handbook - Fundamentals.

Recommended Text if Motion Fails:

310.15. ...
(3) Adjustment Factors.
(a) More than Three Current-Carrying Conductors. Where the number of current-carrying conductors in a raceway or cable exceeds three, or where single conductors or multiconductor cables are installed without maintaining spacing for a continuous length longer than 600 mm (24 in .) and are not installed in raceways, the allowable ampacity of each conductor shall be reduced as shown in Table 310.15(B)(3)(a). Each current-carrying conductor of a paralleled set of conductors shall be counted as a current-carrying conductor.
Where conductors of different systems, as provided in 300.3 , are installed in a common raceway or cable, the adjustment factors shown in Table $310.15(B)(3)(a)$ shall apply only to the number of power and lighting conductors (Articles 210, 215,220, and 230).
Informational Note No. 1: See Annex B for adjustment factors for more than three current-carrying conductors in a raceway or cable with load diversity.
Informational Note No. 2: See 366.23 for adjustment factors for conductors and ampacity for bare copper and aluminum bars in auxiliary gutters and 376.22(B) for adjustment factors for conductors in metal wireways.
(1) Where conductors are installed in cable trays, the provisions of 392.80 shall apply.
(2) Adjustment factors shall not apply to conductors in raceways having a length not exceeding 600 mm (24 in .).
(3) Adjustment factors shall not apply to underground conductors entering or leaving an outdoor trench if those conductors have physical protection in the form of rigid metal conduit, intermediate metal conduit, rigid polyvinyl chloride conduit (PVC), or reinforced thermosetting resin conduit (RTRC) having a length not exceeding $3.05 \mathrm{~m}(10 \mathrm{ft})$, and if the number of conductors does not exceed four.
(4) Adjustment factors shall not apply to Type AC cable or to Type MC cable under the following conditions:
a. The cables do not have an overall outer jacket.
b. Each cable has not more than three current-carrying conductors.
c. The conductors are 12 AWG copper.
d. Not more than 20 current-carrying conductors are installed without maintaining spacing, are stacked, or are supported on "bridle rings."

Exception to (4): If cables meeting the requirements in $310.15(\mathrm{~B})(3)(4)$ a through c with more than 20 current-carrying conductors are installed longer than 600 mm (24 in.) without maintaining spacing, are stacked, or are supported on bridle rings, a 60 percent adjustment factor shall be applied.
Table 310.15(B)(3)(a) Adjustment Factors for More Than Three Current-Carrying Conductors

Number of Conductors	
$4-6$	Percent of Values in Table 310.15(B)(16) Through Table 310.15(B)(19) as Adjusted for Ambient Temperature if Necessary
$7-9$	80
$10-20$	70
$21-30$	50
$31-40$	45
41 and above	40

${ }^{1}$ Number of conductors is the total number of conductors in the raceway or cable, including spare conductors. The count shall be adjusted in accordance with $310.15(\mathrm{~B})(5)$ and (6). The count shall not include conductors that are connected to electrical components that cannot be simultaneously energized.
(b) Raceway Spacing. Spacing between raceways shall be maintained.
(c) Raceways and Cables Exposed to Sunlight on Rooftops. Where raceways or cables are exposed to direct sunlight on or above rooftops, raceways or cables shall be installed a minimum distance above the roof to the bottom of the raceway or cable of $23 \mathrm{~mm}(7 / 8 \mathrm{in}$.). Where the distance above the roof to the bottom of the raceway is less than 23 mm (78 in .), a temperature adder of $33^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right.$) shall be added to the outdoor temperature to determine the applicable ambient temperature for application of the correction factors in Table 310.15(B)(2)(a) or Table 310.15(B)(2)(b).
Exception: Type XHHW-2 insulated conductors shall not be subject to this ampacity adjustment.
Informational Note: One source for the ambient temperatures in various locations is the ASHRAE Handbook - Fundamentals.

Motion Seq \# 70-13: Frederic Hartwell, Hartwell Electrical Services, Inc.

| Motion |
| :--- | :--- |
| Seq\# | Certified Amending Motion: Reject Second Revision No. 2110

(a) shall not apply to the ampacity of cables in cablebus. The ampacity of single-conductor cables, nominally rated 2000 volts or less, shall comply with the following:
(1) The ampacities for 600 kcmil and larger single conductor cables in ventilated cablebus shall not exceed 75 percent of the allowable ampacities in Table 310.15(B)(17) and Table 310.15(B)(19) .
(2) Where cablebus are continuously covered for more than $1.8 \mathrm{~m}(6 \mathrm{ft})$ with solid unventilated covers, the ampacities for 600 kcmil and larger cables shall not exceed 70 percent of the allowable ampacities in Table 310.15(B)(17) and Table 310.15(B)(19).
(3) The ampacities for $1 / 0$ AWG through 500 kcmil single conductor cables in ventilated cablebus shall not exceed 65 percent of the allowable ampacities in Table 310.15(B)(17) and Table 310.15(B)(19).
(4) Where cablebus are continuously covered for more than $1.8 \mathrm{~m}(6 \mathrm{ft})$ with solid unventilated covers, the ampacities for $1 / 0$ AWG through 500 kcmil cables shall not exceed 60 percent of the allowable ampacities in Table 310.15(B)(17) and Table 310.15(B)(19).
(C) Ampacity of Type MV and Type MC Cables Rated 2001 Volts or Over.

The ampacity of Type MV and Type MC cables, nominally rated 2001 volts or over, in cablebus shall comply with the following:
(1) The ampacities for $1 / 0$ AWG and larger single-conductor cables in ventilated cablebus shall not exceed 75 percent of the allowable ampacities in Table 310.60(C)(69) and Table 310.60(C)(70).
(2) Where the cablebus are covered for more than $1.8 \mathrm{~m}(6 \mathrm{ft})$ with solid unventilated covers, the ampacities for $1 / 0$ AWG and larger single-conductor cables shall not exceed 70 percent of the allowable ampacities in Table $310.60(\mathrm{C})(69)$ and Table $310.60(\mathrm{C})(70)$.
Informational Note No. 1: See $110.14(\mathrm{C})$ for conductor temperature limitations due to termination provisions for installations up to and including 2000 volts.
Informational Note No. 2: See 110.40 for conductor temperature limitations due to termination provisions for installations 2001 to 35,000 volts.

$\begin{array}{\|c\|} \hline \text { Motion } \\ \text { Seq\# } \end{array}$	Certified Amending Motion: Accept Public Comment No. 834
70-14	Recommended Text if Motion Passes: 430.22(G) Conductors for Small Motors. Conductors for small motors shall not be smaller than 14 AWG unless otherwise permitted in 430.22(G)(1) or (G)(2). (1) 18 AWG Copper. Where 18 AWG individual copper conductors installed in a cabinet or enclosure, 18 AWG individual copper conductors, copper cenduters that are part of a jacketed multiconductor cable assembly, or copper conductors in a flexible cord shall be permitted, under either of the following sets of conditions: (1) The circuit supplies a motor with a full-load current rating, as determined by $430.6(\mathrm{~A})(1)$, of greater than 3.5 amperes, and less than or equal to 5 amperes, and all the following conditions are met: a. The circuit is protected in accordance with 430.52 . b. The circuit is provided with maximum Class 10 or Class 10A overload protection in accordance with 430.32 . c. Overcurrent protection is provided in accordance with 240.4(D)(1)(2). (2) The circuit supplies a motor with a full-load current rating, as determined by $430.6(\mathrm{~A})(1)$, of 3.5 amperes or less, and all the following conditions are met: a. The circuit is protected in accordance with 430.52 . b. The circuit is provided with maximum Class 20 overload protection in accordance with 430.32 . c. Overcurrent protection is provided in accordance with 240.4(D)(1)(2) . (2) 16 AWG Copper. Where 16 AWG individual copper conductors installed in a cabinet or enclosure, 16 AWG individual copper conductors, copper conductors that are part of a jacketed multiconductor cable assembly, or copper conductors in a flexible cord shall be permitted under either of the following sets of conditions: (1) The circuit supplies a motor with a full-load current rating, as determined by $430.6(\mathrm{~A})(1)$, of greater than 5.5 amperes, and less than or equal to 8 amperes, and all the following conditions are met: a. The circuit is protected in accordance with 430.52 . b. The circuit is provided with maximum Class 10 or Class 10A overload protection in accordance with 430.32. c. Overcurrent protection is provided in accordance with 240.4(D)(2)(2). (2) The circuit supplies a motor with a full-load current rating, as determined by $430.6(\mathrm{~A})(1)$, of 5.5 amperes or less, and all the following conditions are met: a. The circuit is protected in accordance with 430.52 . b. The circuit is provided with maximum Class 20 overload protection in accordance with 430.32 . c. Overcurrent protection is provided in accordance with $240.4(\mathrm{D})(2)(2)$.
	Recommended Text if Motion Fails: 430.22(G) Conductors for Small Motors. Conductors for small motors shall not be smaller than 14 AWG unless otherwise permitted in 430.22(G)(1) or (G)(2). (1) 18 AWG Copper.

Where installed in a cabinet or enclosure, 18 AWG individual copper conductors, copper conductors that are part of a jacketed multiconductor cable assembly, or copper conductors in a flexible cord shall be permitted, under either of the following sets of conditions:
(1) The circuit supplies a motor with a full-load current rating, as determined by $430.6(\mathrm{~A})(1)$, of greater than 3.5 amperes, and less than or equal to 5 amperes, and all the following conditions are met:
a. The circuit is protected in accordance with 430.52
b. The circuit is provided with maximum Class 10 or Class 10A overload protection in accordance with 430.32 .
c. Overcurrent protection is provided in accordance with 240.4(D)(1)(2).
(2) The circuit supplies a motor with a full-load current rating, as determined by $430.6(\mathrm{~A})(1)$, of 3.5 amperes or less, and all the following conditions are met:
a. The circuit is protected in accordance with 430.52 .
b. The circuit is provided with maximum Class 20 overload protection in accordance with 430.32.
c. Overcurrent protection is provided in accordance with 240.4(D)(1)(2) .
(2) 16 AWG Copper.

Where installed in a cabinet or enclosure, 16 AWG individual copper conductors, copper conductors that are part of a jacketed multiconductor cable assembly, or copper conductors in a flexible cord shall be permitted under either of the following sets of conditions:
(1) The circuit supplies a motor with a full-load current rating, as determined by $430.6(\mathrm{~A})(1)$, of greater than 5.5 amperes, and less than or equal to 8 amperes, and all the following conditions are met:
a. The circuit is protected in accordance with 430.52 .
b. The circuit is provided with maximum Class 10 or Class 10A overload protection in accordance with 430.32 .
c. Overcurrent protection is provided in accordance with 240.4(D)(2)(2).
(2) The circuit supplies a motor with a full-load current rating, as determined by $430.6(\mathrm{~A})(1)$, of 5.5 amperes or less, and all the following conditions are met:
a. The circuit is protected in accordance with 430.52 .
b. The circuit is provided with maximum Class 20 overload protection in accordance with 430.32.
c. Overcurrent protection is provided in accordance with 240.4(D)(2)(2).

Motion Seq \# 70-15: Richard Holub, The DuPont Company; Gary Savage, Prysmian Group; and James Dollard, IBEW

Motion	
Seq\#	Certified Amending Motion: Reject an Identifiable Part of Second Revision No. 1808

Recommended Text if Motion Passes:

336.10 Uses Permitted.

Type TC cable shall be permitted to be used as follows: ...
10. Direct buried, where identified for such use
11. In hazardous (elassified) locations where specifically permitted by other articles in this Code. For Class I, Division 1 and Zone 1 locations only, Type TC cable used for other than flexible comnections shall also comply with the following:
a. The cable jacket and construction shall be evaluated and listed for the specific hazardous materials present in the location.
b. The hazardous material group(s) evaluated shall be marked on the cable.
e. The cable diameter shall be limited to 1 in . or smaller.
d. The cable shall be permitted only for voltages of 150 volts to ground or less and currents of 30 amps or less.
e. The cable shall be marked both " $E R$ " and "HL."

Informational Note: See 310.15(A)(3) for temperature limitation of conductors.

Recommended Text if Motion Fails:

336.10 Uses Permitted.

Type TC cable shall be permitted to be used as follows: ...
10. Direct buried, where identified for such use
11. In hazardous (classified) locations where specifically permitted by other articles in this Code. For Class I, Division 1 and Zone 1 locations only, Type TC cable used for other than flexible connections shall also comply with the following:
a. The cable jacket and construction shall be evaluated and listed for the specific hazardous materials present in the location.
b. The hazardous material group(s) evaluated shall be marked on the cable.
c. The cable diameter shall be limited to 1 in . or smaller.
d. The cable shall be permitted only for voltages of 150 volts to ground or less and currents of 30 amps or less.
e. The cable shall be marked both "-ER" and "-HL."

Informational Note: See 310.15(A)(3) for temperature limitation of conductors.

```
\begin{tabular}{c|c} 
Motion & Certified Amending Motion: Accept Committee Comment No. 3902 and Reject Second Correlating Revision No. 3
\end{tabular}
    Seq\#
```


Recommended Text if Motion Passes:

501.10(A)(1) General.

In Class I, Division 1 locations, the wiring methods in (a) through (f) shall be permitted.
(a) Threaded rigid metal conduit or threaded steel intermediate metal conduit.

Exception: Type PVC conduit, Type RTRC conduit, and Type HDPE conduit shall be permitted where encased in a concrete envelope a minimum of $50 \mathrm{~mm}(2 \mathrm{in}$.$) thick and provided with not less than 600 \mathrm{~mm}$ (24 in .) of cover measured from the top of the conduit to grade. The concrete encasement shall be permitted to be omitted where subject to the provisions of 514.8 , Exception No. 2, or 515.8 (A). Threaded rigid metal conduit or threaded steel intermediate metal conduit shall be used for the last 600 mm (24 in .) of the underground run to emergence or to the point of connection to the aboveground raceway. An equipment grounding conductor shall be included to provide for electrical continuity of the raceway system and for grounding of non-current-carrying metal parts.
(b) Type MI cable terminated with fittings listed for the location. Type MI cable shall be installed and supported in a manner to avoid tensile stress at the termination fittings.
(c) In industrial establishments with restricted public access, where the conditions of maintenance and supervision ensure that only qualified persons service the installation, Type MC-HL cable listed for use in Class I, Zone 1 or Division 1 locations, with a gas/vaportight continuous corrugated metallic sheath, an overall jacket of suitable polymeric material, and a separate equipment grounding conductor(s) in accordance with 250.122 , and terminated with fittings listed for the application.
Type MC-HL cable shall be installed in accordance with the provisions of Article 330, Part II.
(d) In industrial establishments with restricted public access, where the conditions of maintenance and supervision ensure that only qualified persons service the installation, Type ITC-HL cable listed for use in Class I, Zone 1 or Division 1 locations, with a gas/vaportight continuous corrugated metallic sheath and an overall jacket of suitable polymeric material, and terminated with fittings listed for the application, and installed in accordance with the provisions of Article 727.
(e) Optical fiber cable Types OFNP, OFCP, OFNR, OFCR, OFNG, OFCG, OFN, and OFC shall be permitted to be installed in raceways in accordance with $501.10(\mathrm{~A})$. These optical fiber cables shall be sealed in accordance with 501.15 .
(f) In industrial establishments with restricted public access, where the conditions of maintenance and supervision ensure that only qualified persons service the installation, for applications limited to 600 volts, nominal, or less, and where protected from damage by location or a suitable guard, listed Type TC-ER-HL cable with an overall jacket and a separate equipment grounding conductor(s) in accordance with 250.122 that is terminated with fittings listed for the location. Type TC-ER-HL cables shall be installed in accordance with the provisions of 336.10 , including the restrictions of 336.10(7).

Recommended Text if Motion Fails:

(1) General.

In Class I, Division 1 locations, the wiring methods in (a) through (f) shall be permitted.
(a) Threaded rigid metal conduit or threaded steel intermediate metal conduit.

Exception: Type PVC conduit, Type RTRC conduit, and Type HDPE conduit shall be permitted where encased in a concrete envelope a minimum of 50 mm (2 in.) thick and provided with not less than 600 mm (24 in .) of cover measured from the top of the conduit to grade. The concrete encasement shall be permitted to be omitted where subject to the provisions of 514.8, Exception No. 2, or 515.8(A). Threaded rigid metal conduit or threaded steel
intermediate metal conduit shall be used for the last 600 mm (24 in .) of the underground run to emergence or to the point of connection to the aboveground raceway. An equipment grounding conductor shall be included to provide for electrical continuity of the raceway system and for grounding of non-current-carrying metal parts.
(b) Type MI cable terminated with fittings listed for the location. Type MI cable shall be installed and supported in a manner to avoid tensile stress at the termination fittings.
(c) In industrial establishments with restricted public access, where the conditions of maintenance and supervision ensure that only qualified persons service the installation, Type MC-HL cable listed for use in Class I, Zone 1 or Division 1 locations, with a gas/vaportight continuous corrugated metallic sheath, an overall jacket of suitable polymeric material, and a separate equipment grounding conductor(s) in accordance with 250.122 , and terminated with fittings listed for the application.
Type MC-HL cable shall be installed in accordance with the provisions of Article 330, Part II.
(d) In industrial establishments with restricted public access, where the conditions of maintenance and supervision ensure that only qualified persons service the installation, Type ITC-HL cable listed for use in Class I, Zone 1 or Division 1 locations, with a gas/vaportight continuous corrugated metallic sheath and an overall jacket of suitable polymeric material, and terminated with fittings listed for the application, and installed in accordance with the provisions of Article 727.
(e) Optical fiber cable Types OFNP, OFCP, OFNR, OFCR, OFNG, OFCG, OFN, and OFC shall be permitted to be installed in raceways in accordance with $501.10(\mathrm{~A})$. These optical fiber cables shall be sealed in accordance with 501.15 .

Motion Seq\#	Certified Amending Motion: Reject Second Correlating Revision No. 90 Recommended Text if Motion Passes: $501.10(A)(2)$ Flexible Connections. Where necessary to employ flexible connections, as at motor terminals, one of the following shall be permitted: (a) Flexible fittings listed for the location (b) Flexible cord in accordance with the provisions of 501.140, terminated with cord connectors listed for the location (c) In industrial establishments with restricted public access, where the conditions of maintenance and supervision ensure that only qualified persons service the installation, for applications limited to 600 volts, nominal, or less, and where protected from damage by location or a suitable guard, listed Type TC-ER-HL cable with an overall jacket and a separate equipment grounding conductor(s) in accordance with 250.122 that is terminated with fittings listed for the location
Recommended Text if Motion Fails: 501.10(A)(2) Flexible Connections. Where necessary to employ flexible connections, as at motor terminals, one of the following shall be permitted: (a) Flexible fittings listed for the location (b) Flexible cord in accordance with the provisions of 501.140, terminated with cord connectors listed for the location (c) In industrial establishments with restricted public access, where the conditions of maintenance and supervision ensure that only qualified persons service the installation, for applications limited to 600 volts, nominal, or less, and where protected from damage by location or a suitable guard, listed Type TC-ER-HL cable with an overall jacket and a separate equipment grounding conductor(s) in accordance with 250.122 that is terminated with fittings listed for the location	

Panel 14 Motion Seq \# 70-18 Richard Holub, The DuPont Company, Inc. and Gary Savage, Prysmian Group

Certified Amending Motion: Accept Committee Comment No. 3906 and Reject an Identifiable Part of Second Correlating Revision No. 94

Recommended Text if Motion Passes:

505.15(B)(1) General.

In Class I, Zone 1 locations, the wiring methods in $505.15(\mathrm{~B})(1)$ (a) through (B)(1)(i) shall be permitted. ...
(i) In industrial establishments with restricted public access, where the conditions of maintenance and supervision ensure that only qualified persons service the installation, for applications limited to 600 volts nominal or less, for cable diameters 25 mm (1 im .) or less, and where the cable is not subject to physical damage, Type TC-ER-HL cable listed for use in Class I, Zone 1 locations, with an overall jacket and a separate equipment grounding conductor(s) in accordance with 250.122 , and terminated with fittings listed for the location, Type TC-ER-HL cable shall be installed in accordance with the provisions of Article 336, including the restrictions of $336.10(7)$.

Recommended Text if Motion Fails:

505.15(B)(1) General.

In Class I, Zone 1 locations, the wiring methods in 505.15 (B)(1) (a) through (B)(1)(i) shall be permitted. ...
(i) In industrial establishments with restricted public access, where the conditions of maintenance and supervision ensure that only qualified persons service the installation, for applications limited to 600 volts nominal or less, for cable diameters 25 mm (1 in .) or less, and where the cable is not subject to physical damage, Type TC-ER-HL cable listed for use in Class I, Zone 1 locations, with an overall jacket and a separate equipment grounding conductor(s) in accordance with 250.122 , and terminated with fittings listed for the location, Type TC-ER-HL cable shall be installed in accordance with the provisions of Article 336, including the restrictions of 336.10(7).

Motion Seq \# 70-19: Marcelo Hirshler, GBH International
Certified Amending Motion: Accept Public Comment No. 806
Motion
Seq\#

Recommended Text if Motion Passes:

525.2 Definitions.

Operator (as related to carnivals, circuses, fairs and similar events). The individual responsible for starting, stopping, and controlling an amusement
70-19
ride or supervising a concession.
Recommended Text if Motion Fails:
525.2 Definitions.

Operator. The individual responsible for starting, stopping, and controlling an amusement ride or supervising a concession.

Motion Seq\#	Certified Amending Motion: Reject Second Revision No. 607
70-20	Recommended Text if Motion Passes: 590.4(J) Definition.... Support. Cable assemblies and flexible cords and cables shall be supported in place at intervals that ensure that they will be protected from physical damage. Support shall be in the form of staples, cable ties, straps, or similar type fittings installed so as not to cause damage. Cable assemblies and flexible cords and cables installed as branch circuits or feeders shall not be installed on the floor or on the ground. Extension cords shall not be required to comply with 590.4(J). Multicenductor cord or cable of a type identified in Table 400.4 for hard usage or extra hard usage shall not be required to emply with $590.4(\mathrm{~J}$.Vegetation shall not be used for support of overhead spans of branch circuits or feeders. Exception: For holiday lighting in accordance with 590.3(B), where the conductors or cables are arranged with strain relief devices, tension take-up devices, or other approved means to avoid damage from the movement of the live vegetation, trees shall be permitted to be used for support of overhead spans of branch-circuit conductors or cables.
	Recommended Text if Motion Fails: 590.4(J) Definition.... Support. Cable assemblies and flexible cords and cables shall be supported in place at intervals that ensure that they will be protected from physical damage. Support shall be in the form of staples, cable ties, straps, or similar type fittings installed so as not to cause damage. Cable assemblies and flexible cords and cables installed as branch circuits or feeders shall not be installed on the floor or on the ground. Extension cords shall not be required to comply with $590.4(\mathrm{~J})$. Multiconductor cord or cable of a type identified in Table 400.4 for hard usage or extra-hard usage shall not be required to comply with 590.4(J). Vegetation shall not be used for support of overhead spans of branch circuits or feeders. Exception: For holiday lighting in accordance with 590.3(B), where the conductors or cables are arranged with strain relief devices, tension take-up devices, or other approved means to avoid damage from the movement of the live vegetation, trees shall be permitted to be used for support of overhead spans of branch-circuit conductors or cables.

Motion Seq \# 70-21: Terry Peters, SPI

Motion Seq\#	Certified Amending Motion: Reject Second Revision No. 5124, including any related portions of First Revision No. 5139							
70-21	Listed class 2 cable listed for the application that complies with Table 600.33(A)(1) or Table 600.33(A)(2) for substitutions shall be installed on the load side of the Class 2 power source. The conductors shall have an ampacity not less than the load to be supplied and shall not be sized smaller than 2218 AWG.							
	Lecation	CL2	CL3	CL2R	CL3R	CL2P	CL3P	PLTC
	Non-concealed spaces inside buildings	Y	Y	Y	Y	Y	Y	Y
	Goncealed spaces inside buildingsthat are not used as plenums or risers	Y	Y	Y	Y	Y	Y	Y
	Environmental air spaces plenmms-or risers	N	N	Y	Y	Y	Y	N
	Wet locations	N	N	N	N	N	N	Y
	$\mathrm{Y}=$ Permitted. $\mathrm{N}=\mathrm{Not}$ Permitted. Table 600.33(A)(2) Class 2 Cable Substitutions							
	Cable Type Permitted Substitutions							
	EL3P EMP							
	CL2P CMP, CL3P							
	EL3R EMP, CL3P, CMR							
	EL2R EMP, CL3P, CL2P, CMR, CL3R							
	PLTC CL2, CL3X, CL2X							
	CL3 CMP, CL3P, CMR, CL3R, CMG, CM, PLTC							
	CL2 CMP, CL3P, CL2P, CMR, CL3R, CL2R, CMG CM,							
	GL3X GMP, CL3P, CMR, CL3R, CMG, CM, PLTC, CL3,							
	CL2X CMP, CL3P, CL2P, CMR, CL3R, CL2R, CMG, CM, PLTC, CL3, CL2, CMX,CL3X							
	(1) General Use. EL2 or CL3, PLTC, or any listed applieable cable for general use shall be installed within and on buildings or structures. (2) Other Building Locations. In other locations, any listed applicable cable permitted in $600.33(A)(1),(A)(2),(A)(3)$, and (A)(4) and Table $600.33(A)(1)$ and (A)(2) shall be permitted to be used as follows:							

CL2P or CL3P - Ducts, plenums, or other spaces used for environmental air

CL2R or CL3R Vertical shafts and risers
Substitutions from Table 600.33(A)(2)
(1) Wet Locations.

Class 2 cable used in a wet location shall be identified listed and marked suitable for use in a wet locations or have a moisture-impervious metal sheath.
(2) Other Locations.

In other locations, any applicable cable permitted in Table 725.154 shall be permitted to be used. Class 2 cable exposed to sunlight shall be listed and marked sunlight resistant suitable for outdoor use.
(B) Installation.

Secondary wiring shall be installed in accordance with (B)(1) and (B)(2).
Support wiring shall be installed in a neat and workmanlike manner. Cables and conductors installed exposed on the surface of ceilings and sidewalls shall be supported by the building structure in such a manner that the cable is not be damaged by normal building use. The cable shall be supperted and secured at intervals not exceeding $1.8 \mathrm{~m}(6 \mathrm{ft})$. Such cables shall be supported by straps, staples, hangers, cable ties, or similar fittings designed and installed so as not to damage the cable. The installation shall also comply with 300.4(D) .
Connections in cable and conductors shall be made with listed insulating devices and be accessible after installation. Where made in a wall, connections shall be enclosed in a listed box.
(C) Protection Against Physical Damage.

Where subject to physical damage, the conductors shall be protected and installed in accordance with 300.4 .
(D) Grounding and Bonding.

Grounding and bonding shall be in accordance with 600.7 .

Recommended Text if Motion Fails:

600.33. ...

Class 2 cable listed for the application that complies with Table $600.33(\mathrm{~A})(1)$ or Table $600.33(\mathrm{~A})(2)$ for substitutions shall be installed on the load side of the Class 2 power source. The conductors shall have an ampacity not less than the load to be supplied and shall not be sized smaller than 18 AWG. Table 600.33(A)(1) Applications of Power Limited Cable in Signs and Outline Lighting

Location	CL2	CL3	CL2R	CL3R	CL2P
CL3P	PLTC				
Non-concealed spaces inside buildings	Y	Y	Y	Y	Y
Concealed spaces inside buildings that are not used as plenums or risers	Y	Y	Y	Y	Y
Environmental air spaces plenums-or risers	N	N	Y	Y	Y
Wet locations	N	N	N	Y	N
Y	Y	N	N	Y	

Y = Permitted. $\mathrm{N}=$ Not Permitted.
Table 600.33(A)(2) Class 2 Cable Substitutions

Cable Type	Permitted Substitutions
CL3P	CMP
CL2P	CMP, CL3P
CL3R	CMP, CL3P, CMR

CL2R	CMP, CL3P, CL2P, CMR, CL3R
PLTC	CL2, CL3X, CL2X
CL3	CMP, CL3P, CMR, CL3R, CMG, CM, PLTC
CL2	CMP, CL3P, CL2P, CMR, CL3R, CL2R, CMG CM, PLTC, CL3
CL3X	CMP, CL3P, CMR, CL3R, CMG, CM, PLTC, CL3, CMX
CL2X	CMP, CL3P, CL2P, CMR, CL3R, CL2R, CMG, CM, PLTC, CL3, CL2, CMX,CL3X
70-21 Installation.	Secondary wiring shall be installed in accordance with (B)(1) and (B)(2). Cont'd Wiring shall be installed and supported in a neat and workmanlike manner. Cables and conductors installed exposed on the surface of ceilings and sidewalls shall be supported by the building structure in such a manner that the cable is not damaged by normal building use. The cable shall be supported and secured at intervals not exceeding 1.8 m (6 ft). Such cables shall be supported by straps, staples, hangers, cable ties, or similar fittings designed and installed so as not to damage the cable. The installation shall also comply with 300.4(D). Connections in cable and conductors shall be made with listed insulating devices and be accessible after installation. Where made in a wall, connections shall be enclosed in a listed box.

Motion Seq \# 70-22: David Kiddoo, CCCA

$\begin{aligned} & 70-22 \\ & \text { Cont'd } \end{aligned}$	Location		CL2	CL3	CL2R	CL3R	CL2P	CL3P	PLTC
	Non-concea	aces inside buildings	Y	Y	Y	Y	Y	Y	Y
	Concealed s	inside buildings that are not used as plenums or risers	Y	Y	Y	Y	Y	Y	Y
	Environmen	spaces plenums-or risers	N	N	Y	Y	Y	Y	N
	Wet location			N	N	N	N	N	Y
	$\mathrm{Y}=$ Permitted. $\mathrm{N}=$ Not Permitted. Table 600.33(A)(2) Class 2 Cable Substitutions								
	Cable Type Permitted Substitutions								
	CL3P	CMP							
	CL2P	CMP, CL3P							
	CL3R	CMP, CL3P, CMR							
	CL2R	CMP, CL3P, CL2P, CMR, CL3R							
	PLTC	CL2, CL3X, CL2X							
	CL3	CMP, CL3P, CMR, CL3R, CMG, CM, PLTC							
	CL2	CMP, CL3P, CL2P, CMR, CL3R, CL2R, CMG CM,							
	CL3X	CMP, CL3P, CMR, CL3R, CMG, CM, PLTC, CL3,							
	CL2X	CMP, CL3P, CL2P, CMR, CL3R, CL2R, CMG, CM,	X,CL						

Motion Seq \# 70-23: David Kiddoo, CCCA

$70-23$Cont'd	Location		CL2	CL3	CL2R	CL3R	CL2P	CL3P	PLTC
	Non-concea	paces inside buildings	Y	Y	Y	Y	Y	Y	Y
	Concealed s	inside buildings that are not used as plenums or risers	Y	Y	Y	Y	Y	Y	Y
	Environmen	spaces plenums-or risers	N	N	Y	Y	Y	Y	N
	Wet location		N	N	N	N	N	N	Y
	$\mathrm{Y}=$ Permitted. $\mathrm{N}=$ Not Permitted. Table 600.33(A)(2) Class 2 Cable Substitutions								
	Cable Type Permitted Substitutions								
	CL3P CMP								
	CL2P CMP, CL3P								
	CL3R CMP, CL3P, CMR								
	CL2R CMP, CL3P, CL2P, CMR, CL3R								
	PLTC CL2, CL3X, CL2X								
	CL3 CMP, CL3P, CMR, CL3R, CMG, CM, PLTC								
	$\begin{array}{ll}\text { CL2 } & \text { CMP, CL3P, CL2P, CMR, CL3R, CL2R, CMG CM, PLTC, CL3 } \\ \text { CL3X } & \text { CMP, CL3P, CMR, CL3R, CMG, CM, PLTC, CL3, CMX }\end{array}$								
	CL3X CMP, CL3P, CMR, CL3R, CMG, CM, PLTC, CL3, CMX CL2X CMP, CL3P, CL2P, CMR, CL3R, CL2R, CMG, CM, PLTC, CL3, CL2, CMX,CL3X								

Motion Seq\#	Certified Amending Motion: Accept Public Comment No. 1588
70-24	Recommended Text if Motion Passes: 625.17(A) Power-Supply Cord. The cable for cord-connected equipment shall comply with all of the following: (1) Be any of the types specified in $625.17(\mathrm{~B})$ or hard service cord, junior hard service cord, or portable power cable types in accordance with Table 400.4. Hard service cord, junior hard service cord, or portable power cable types shall be listed, as applicable, for exposure to oil and damp and wet locations. (2) Have an ampacity as specified in Table $400.5(\mathrm{~A})(1)$ or, for 8 AWG and larger, in the $60^{\circ} \mathrm{C}$ columns of Table $400.5(\mathrm{~A})(2)$. (3) Have an overall length as specified in 625.17(A)(3)a. or b as follows: a. When the interrupting device of the personnel protection system specified in 625.22 is located within the enclosure of the supply equipment or charging system, the power-supply cord shall be not more than $300 \mathrm{~mm} 12 \mathrm{in}-915 \mathrm{~mm}$ (36 in .) long, b. When the interrupting device of the personnel protection system specified in 625.22 is located at the attachment plug, or within the first 300 mm (12 in.) of the power-supply cord, the overall cord length shall be a minimum of $1.8 \mathrm{~m}(6 \mathrm{ft})$ and shall be not greater than $4.6 \mathrm{~m}(15 \mathrm{ft})$.
	Recommended Text if Motion Fails: 625.17(A) Power-Supply Cord. The cable for cord-connected equipment shall comply with all of the following: (1) Be any of the types specified in $625.17(\mathrm{~B})$ or hard service cord, junior hard service cord, or portable power cable types in accordance with Table 400.4. Hard service cord, junior hard service cord, or portable power cable types shall be listed, as applicable, for exposure to oil and damp and wet locations. (2) Have an ampacity as specified in Table $400.5(\mathrm{~A})(1)$ or, for 8 AWG and larger, in the $60^{\circ} \mathrm{C}$ columns of Table 400.5(A)(2). (3) Have an overall length as specified in 625.17(A)(3)a. or b as follows: a. When the interrupting device of the personnel protection system specified in 625.22 is located within the enclosure of the supply equipment or charging system, the power-supply cord shall be not more than 300 mm (12 in) long, b. When the interrupting device of the personnel protection system specified in 625.22 is located at the attachment plug, or within the first 300 mm (12 in.) of the power-supply cord, the overall cord length shall be a minimum of $1.8 \mathrm{~m}(6 \mathrm{ft})$ and shall be not greater than $4.6 \mathrm{~m}(15 \mathrm{ft})$.

Motion Seq \# 70-25: Jason France, ClipperCreek Inc; Sean Lui, Tesla Motors; Alec Brooks, AeroVironment Inc; and Craig Rodine, ChargePoint Inc.

Motion Seq\#	Certified Amending Motion: Accept Public Comment No. 1719; Accept Public Comment No. 1509; Accept Public Comment No. 1097; Accept Public Comment No. 1461
	Recommended Text if Motion Passes: $625.17(B)$ (1) Output Cable to the Electric Vehicle. The output cable to the electric vehicle shall be Type EV, EVJ, EVE, EVJE, EVT, or EVJT flexible cable as specified in Table 400.4. The output cable shall have an ampacity as specified in Table 400.5(A)(1) or, for 8 AWG and larger, in the $60^{\circ} \mathrm{C}$ columns of Table 400.5(A)(2). Exception to (B)(1): Listed electric vehicle supply equipment may incorporate output cables having ampacities greater than the ampacities in the $60^{\circ} \mathrm{C}$ columns of Table 400.5(A)(2) based on the permissible temperature limits for the components and the cable.
Recommended Text if Motion Fails: 625.17(B) (1) Output Cable to the Electric Vehicle. The output cable to the electric vehicle shall be Type EV, EVJ, EVE, EVJE, EVT, or EVJT flexible cable as specified in Table 400.4. The output cable shall have an ampacity as specified in Table 400.5(A)(1) or, for 8 AWG and larger, in the $60^{\circ} \mathrm{C}$ columns of Table 400.5(A)(2).	

Motion Seq \# 70-26: Alec Brooks, AeroVironment Inc; Jason France, ClipperCreek Inc; and Sean Lui, Tesla Motors

Motion Seq\#	Certified Amending Motion: Accept Public Comment No. 1075; Accept Public Comment No. 1722; Accept Public Comment No. 1534
70-26	Recommended Text if Motion Passes: 625.44(A) Portable Equipment. Portable equipment shall be connected to the premises wiring systems by one or more of the following methods: (1) A nonlocking, 2-pole, 3-wire grounding-type receptacle outlet rated at 125 volt, single phase, 15 or 20 amperes (2) A nonlocking, 2-pole, 3-wire grounding-type receptacle outlet rated at 250 volt, single phase, 15 or 20 amperes (3) A nonlocking, 2-pole, 3-wire or 3-pole, 4-wire grounding-type receptacle outlet rated at 250 volt, single phase, 30 or 50 amperes (4) A nonlocking, 2-pole, 3-wire grounding-type receptacle outlet rated 5060 -volts dc maximum, 15 or 20 amperes The length of the power supply cord, if provided, between the receptacle outlet and the equipment shall be in accordance with $625.17(\mathrm{~A})(3)$.
	Recommended Text if Motion Fails: 625.44(A) Portable Equipment. Portable equipment shall be connected to the premises wiring systems by one of the following methods: (1) A nonlocking, 2-pole, 3-wire grounding-type receptacle outlet rated at 125 volt, single phase, 15 or 20 amperes (2) A nonlocking, 2-pole, 3-wire grounding-type receptacle outlet rated 60 volt dc maximum, 15 or 20 amperes The length of the power supply cord, if provided, between the receptacle outlet and the equipment shall be in accordance with 625.17 (A) (3).

Motion Seq\#	Certified Amending Motion: Accept Identifiable Part of Public Comment No. 46Recommended Text if Motion Passes: 646.3(B) Wiring and Cabling in Other Spaces Used for Environmental Air (Plenums). The following sections and tables shall apply to wiring and cabling in other spaces used for environmental air (plenums) within a modular data center space: (1) Wiring methods: 300.22(C)(1) (2) Class 2, Class 3, and PLTC cables: 725.135(C) and Table 725.154 (3) Fire alarm systems: 760.53(B)(2), 760.135(C) and Table 760.154 (4) Optical fiber cables: 770.113(C) and Table 770.154(a) (5) Communications circuits: 800.113(C) and Table 800.154(a), (b), and (c) (6) CATV and radio distribution systems: 820.113(C) and Table-800 820.154(a) Informational Note: Environmentally controlled working spaces, aisles, and equipment areas in an MDC are not considered a plenum.
Recommended Text if Motion Fails: 646.3(B) Wiring and Cabling in Other Spaces Used for Environmental Air (Plenums). The following sections and tables shall apply to wiring and cabling in other spaces used for environmental air (plenums) within a modular data center space: (1) Wiring methods: 300.22(C)(1) (2) Class 2, Class 3, and PLTC cables: 725.135(C) and Table 725.154 (3) Fire alarm systems: 760.53(B)(2), 760.135(C) and Table 760.154 (4) Optical fiber cables: 770.113(C) and Table 770.154(a) (5) Communications circuits: 800.113(C) and Table 800.154(a), (b), and (c) (6) CATV and radio distribution systems: 820.113(C) and Table 800.154(a) Informational Note: Environmentally controlled working spaces, aisles, and equipment areas in an MDC are not considered a plenum.	

Motion Seq \# 70-28: Phil Simmons, Simmons Electrical Services; Paul Abernathy, McKinney, TX
NFPA

Motion Seq\#	Certified Amending Motion: Reject Second Correlating Revision No. 43
70-28	Recommended Text if Motion Passes: 680.14 Corrosive Environment. (A) General. Areas where pool sanitation chemicals are stored, as well as areas with circulation pumps, automatic chlorinators, filters, open areas under decks adjacent to or abutting the pool structure, and similar locations shall be considered to be a corrosive environment. The air in such areas shall be considered to be laden with acid, chlorine, and bromine vapors, or any combination of acid, chlorine, or bromine vapors, and any liquids or condensation in those areas shall be considered to be laden with acids, chlorine, and bromine vapors, or any combination of acid, chlorine, or bromine vapors. (B) Wiring Methods. Wiring methods in the areas described in 680.14 (A) shall be listed and identified for use in such areas. Rigid metal conduit, intermediate metal conduit, rigid polyvinyl chloride conduit, and reinforced thermosetting resin conduit shall be considered to be resistant to the corrosive environment specified in 680.14(A).
	Recommended Text if Motion Fails: 680.14 Corrosive Environment. (A) General. Areas where pool sanitation chemicals are stored, as well as areas with circulation pumps, automatic chlorinators, filters, open areas under decks adjacent to or abutting the pool structure, and similar locations shall be considered to be a corrosive environment. The air in such areas shall be considered to be laden with acid, chlorine, and bromine vapors, or any combination of acid, chlorine, or bromine vapors, and any liquids or condensation in those areas shall be considered to be laden with acids, chlorine, and bromine vapors, or any combination of acid, chlorine, or bromine vapors. (B) Wiring Methods. Wiring methods in the areas described in $680.14(\mathrm{~A})$ shall be listed and identified for use in such areas. Rigid metal conduit, intermediate metal conduit, rigid polyvinyl chloride conduit, and reinforced thermosetting resin conduit shall be considered to be resistant to the corrosive environment specified in 680.14(A).

Motion Seq \# 70-29: Roger McDaniel, Georgia Power Company/Southern Company

Motion Seq\#	Certified Amending Motion: Accept an Identifiable Part of Public Comment No. 1711Recommended Text if Motion Passes: 691 Large-Scale Photovoltaic (PV) Electric Supply Stations-Power Production Facility 691.1 Scope. This article covers the installation of large-scale PV electric supply stations power production facilities with a generating capacity of no less than 5000 kW, and not under exclusive utility control. Informational Note No. 1: Facilities covered by this article have specific design and safety features unique to large-scale PV facilities and are operated for the sole purpose of providing electric supply to a system operated by a regulated utility for the transfer of electric energy. Informational Note No. 2: Section 90.2(B)(5) includes information about utility-owned properties not covered under this Code. For additional information on electric supply stations, see ANSI/IEEE C2-2012, National Electrical Safety Code.
	Recommended Text if Motion Fails:
691 Large-Scale Photovoltaic (PV) Electric Supply Stations 691.1 Scope. This article covers the installation of large-scale PV electric supply stations with a generating capacity of no less than 5000	
exclusive utility control. Informational Note No. 1: Facilities covered by this article have specific design and safety features unique to large-scale PV facilities and are operated for the sole purpose of providing electric supply to a system operated by a regulated utility for the transfer of electric energy. Informational Note No. 2: Section 90.2(B)(5) includes information about utility-owned properties not covered under this Code. For additional information on electric supply stations, see ANSI/IEEE C2-2012, National Electrical Safety Code.	

Motion Seq\#	Certified Amending Motion: Reject Second Correlating Revision No. 112Recommended Text if Motion Passes: 691.4 Special Requirements for Large-Scale PV Electric Supply Stations. Large-scale PV electric supply stations shall be accessible only to authorized personnel and comply with the following: (1) Electrical circuits and equipment for large-scale PV electric supply stations are accessible only to qualified personnel needed for the maintenance and operation of the PV electric supply station shall be maintained and operated only by qualified personnel. Informational Note: Refer to NFPA 70E-2015, Standard for Electrical Safety in the Workplace, for electrical safety requirements. (2) Access to PV electric supply stations is shall be-restricted by fencing or other adequate means in accordance with 110.31 . Field applied hazard markings shall be applied in accordance with 110.21(B). (3) The connection between the PV electric supply station and the utility transmission or distribution system system operated by a utility for the transfer of electricalenergy is shall be through through medium- or high-voltage switch gear, substation, switch yard, or similar methods whose sole purpose is shall be to safely and effectively interconnect the two systems. (4) The electrical loads within the PV electric supply station are only used to power auxiliary equipment for the generation of the PV power. (5) Large seale PV electric supply stations shall not be installed on buildings.
	Recommended Text if Motion Fails: 691.4 Special Requirements for Large-Scale PV Electric Supply Stations. Large-scale PV electric supply stations shall be accessible only to authorized personnel and comply with the following: (1) Electrical circuits and equipment shall be maintained and operated only by qualified personnel. Informational Note: Refer to NFPA 70E-2015, Standard for Electrical Safety in the Workplace, for electrical safety requirements. (2) Access to PV electric supply stations shall be restricted by fencing or other adequate means in accordance with $110.31 . ~ F i e l d-a p p l i e d ~ h a z a r d ~$ markings shall be applied in accordance with 110.21(B). (3) The connection between the PV electric supply station and the system operated by a utility for the transfer of electrical energy shall be through medium- or high-voltage switch gear, substation, switch yard, or similar methods whose sole purpose shall be to safely and effectively interconnect the two systems. (4) The electrical loads within the PV electric supply station shall only be used to power auxiliary equipment for the generation of the PV power. (5) Large-scale PV electric supply stations shall not be installed on buildings.

Motion Seq \# 70-31: Roger McDaniel, Georgia Power Company/Southern Company

Certified Amending Motion: Reject Second Revision No. 981

Recommended Text if Motion Passes:

691.6 Engineered-Design Under Engineering Supervision. Documentation of the electrical portion of the engineered design of the electric supply station shall be stamped and provided upon request of the AHJ. An additional Additional stamped independent engineering report reports detailing compliance of the design with applicable electrical standards and industry practice shall be provided upon request of the AHJ. The independent engineer shall be a licensed professional electrical engineer retained by the system owner or installer. This documentation shall include details of conformance of the design with Article 690, and any alternative methods to Article 690, or other articles of this Code .

Recommended Text if Motion Fails:

691.6 Engineered Design. Documentation of the electrical portion of the engineered design of the electric supply station shall be stamped and provided upon request of the AHJ. Additional stamped independent engineering reports detailing compliance of the design with applicable electrical standards and industry practice shall be provided upon request of the AHJ. The independent engineer shall be a licensed professional electrical engineer retained by the system owner or installer. This documentation shall include details of conformance of the design with Article 690 , and any alternative methods to Article 690 , or other articles of this Code.

Motion Seq \# 70-32: Roger McDaniel, Georgia Power Company/Southern Company

Motion Seq\#	Certified Amending Motion: Reject Second Revision No. 982
	Recommended Text if Motion Passes: 691.7 Installation Under Engineering Supervision Conformance of Construction to Engineered Design. Documentation that the censtruction of the electric supply station installation eonforms to the electrical engineered design shall be provided upon request of the AHJ. An additional Additionat stamped-independent engineering report reports detailing compliance with the construction conforms with this Code, applicable standards and industry practice shall be provided upon request of the AHJ. This documentation shall include details of conformance of the installation with this Code, applicable standards, and industry practice The independent engineer shall be a licensed professional electrieal engineer retained by the system owner er installer. This documentation, where requested, shall be available prior to the commercial operation of the station.
	Recommended Text if Motion Fails: 691.7 Conformance of Construction to Engineered Design. Documentation that the construction of the electric supply station conforms to the electrical engineered design shall be provided upon request of the AHJ. Additional stamped independent engineering reports detailing the construction conforms with this Code, applicable standards and industry practice shall be provided upon request of the AHJ. The independent engineer shall be a licensed professional electrical engineer retained by the system owner or installer. This documentation, where requested, shall be available prior to commercial operation of the station.

Motion Seq \# 70-33: Roger McDaniel, Georgia Power Company/Southern Company

Motion Seq\#	Certified Amending Motion: Reject Second Revision No. 983
70-33	Recommended Text if Motion Passes: 691.8 Direct Current Operating Voltage. For large-scale PV electric supply stations operating at a dc voltage above 1000 volts, calculations shall be performed under engineering supervision ineluded in the doeumentation required in 691.6 .
	Recommended Text if Motion Fails: 691.8 Direct Current Operating Voltage. For large-scale PV electric supply stations, calculations shall be included in the documentation required in 691.6.

Motion Seq \# 70-34: Roger McDaniel, Georgia Power Company/ Southern Company

Motion Seq\#	Certified Amending Motion: Reject Second Revision No. 988
70-34	Recommended Text if Motion Passes: 705.2 Definitions. Intentionally Islanded Mierogrid System. A premises wiring system that has generation and/or-, energy storage, and load, has (s), or any combination thereof, that includes the ability to disconnect from and parallel with the primary source, and is intentionally planned. Informational Note: An electrical system that separates from the primary source and can operate individually or interconnected is sometimes referred to as a microgrid. The application of Article 705 to microgrid systems is limited by the exelusions in 90.2 (B)(5) related to electric utilities.
	Recommended Text if Motion Fails: 705.2 Definitions. Microgrid System. A premises wiring system that has generation, energy storage, and load(s), or any combination thereof, that includes the ability to disconnect from and parallel with the primary source. Informational Note: The application of Article 705 to microgrid systems is limited by the exclusions in $90.2(\mathrm{~B})(5)$ related to electric utilities.

Motion Seq \# 70-35: Roger McDaniel, Georgia Power Company/ Southern Company

Motion Seq\#	Certified Amending Motion: Reject Second Revision No. 989
$70-35$	Recommended Text if Motion Passes: $\mathbf{7 0 5 . 2}$ Definitions. Island Interconnection Mierogrid Interconneet Device (IID) (MID). A device that allows an intentionally islanded a mierogrid system to separate from and reconnect to a primary power source.
	Recommended Text if Motion Fails: 705.2 Definitions. Microgrid Interconnect Device (MID). A device that allows a microgrid system to separate from and reconnect to a primary power source.

$\begin{array}{\|c\|} \hline \text { Motion } \\ \text { Seq\# } \end{array}$	Certified Amending Motion: Reject Second Correlating Revision No. 116
70-36	Recommended Text if Motion Passes: 705.150 System Operation. Interconnected electric power production sources Mierogrid systems shall be permitted to disconnect from the primary source of power or other interconnected electric power production sources and operate as a separate intentionally islanded or stand-alone mierogrid system. 705.155 Disconnecting Means. Stand-alone power sources shall be provided with a lockable disconnecting means and overcurrent protection in accordance with 240.21. 705.160 Primary Power Source Connection. Connections to primary power sources that are external to the intentionally islanded or stand-alone mierogrid system shall comply with the requirements of 705.12. 705.165 Reconnection to Primary Power Source. Operating intentionally islanded or stand-alone Mieregrid systems that reconnect to primary power sources shall be provided with the necessary equipment to establish a synchronous transition. 705.170 Island Interconnection Microgrid Intereomnect Devices (IID) (MID). Mierogrid intereonnect devices shall comply with the following: (1) An IID shall be $B e$ required for any connection between an intentionally islanded or stand-alone a mierogrid system and a primary power source. (2) Interconnection devices shall be listed, Be listed or field labeled, as suitable for the intended interconnection application. (3) Interconnection devices shall have Have sufficient number of overcurrent devices located so as to provide overcurrent protection from all sources. Informational Note: MID functionality is often incorporated in an interactive or multimode inverter, energy storage system, or similar device identified for interactive operation.
	Recommended Text if Motion Fails: 705.150 System Operation. Microgrid systems shall be permitted to disconnect from the primary source of power or other interconnected electric power production sources and operate as a separate microgrid system. 705.160 Primary Power Source Connection. Connections to primary power sources that are external to the microgrid system shall comply with the requirements of 705.12. 705.165 Reconnection to Primary Power Source. Microgrid systems that reconnect to primary power sources shall be provided with the necessary equipment to establish a synchronous transition. 705.170 Microgrid Interconnect Devices (MID). Microgrid interconnect devices shall comply with the following: (1) Be required for any connection between a microgrid system and a primary power source (2) Be listed or field labeled for the application (3) Have sufficient number of overcurrent devices located to provide overcurrent protection from all sources

Motion Seq\#	Certified Amending Motion: Reject Second Revision 987, Including any Related Portions of First Revision No. 1045 and First Correlating Revisions
70-37	Recommended Text if Motion Passes: Article 710-Stand-Alone Systems. 710.1 Scope. This article covers electric power production sources operating in stand-alone mode. 710.6 Equipment Approval. All equipment shall be listed or field labeled for the intended use. 710.15 General. Premises wiring systems shall be adequate to meet the requirements of this Code for similar installations supplied by a feeder or service. The wiring on the supply side of the building or structure disconnecting means shall comply with the requirements of this Code, except as modified by 710.15 (A) through (F). (A) Supply Output. Power supply to premises wiring systems shall be permitted to have less capacity than the caleulated load. The capacity of the stand alone supply shall be equal to or greater than the load posed by the largest single utilization equipment connected to the system. Caleulated general lighting loads shall not be considered as a single load. (B) Sizing and Protection. The circuit conductors between a stand-alone source and a building or structure disconnecting means shall be sized based on the sum of the output ratings of the stand-alone sources. (C) Single 120 Volt Supply. Stand-alone systems shall be permitted to supply 120 volts to single-phase, 3 -wire, $120 / 240$ volt service equipment or distribution panels where there are no 240 volt outlets and where there are no multiwire branch circuits. In all installations, the sum of the ratings of the power sources shall be less than the rating of the neutral bus in the service equipment. This equipment shall be marked with the following words or equivalent: WARNING: SINGLE 120-VOLT SUPPLY. DO NOT CONNECT MULTIWIRE BRANCH CIRCUITS! The warning sign(s) or label(s) shall comply with 110.21 (B). (D) Energy Storage or Backup Power System Requirements. Energy storage or backup power supplies are not required. (E) Back Fed Cireuit Breakers. Plug in type back fed cireuit breakers connected to an intereonnected supply shall be secured in accordance with 408.36 (D). Cireuit breakers marked "line" and "load" shall not be back-fed. (F) Voltage and Frequency Control. The stand-alone supply shall be controlled so that voltage and frequeney remain within suitable limits for the connected loads
	Recommended Text if Motion Fails: Article 710 Stand-Alone Systems. 710.1 Scope. This article covers electric power production sources operating in stand-alone mode.

710.6 Equipment Approval.

All equipment shall be listed or field labeled for the intended use.
710.15 General.

Premises wiring systems shall be adequate to meet the requirements of this Code for similar installations supplied by a feeder or service. The wiring on the supply side of the building or structure disconnecting means shall comply with the requirements of this Code, except as modified by 710.15(A) through (F).
(A) Supply Output.

Power supply to premises wiring systems shall be permitted to have less capacity than the calculated load. The capacity of the stand-alone supply shall be equal to or greater than the load posed by the largest single utilization equipment connected to the system. Calculated general lighting loads shall not be considered as a single load.
(B) Sizing and Protection.

The circuit conductors between a stand-alone source and a building or structure disconnecting means shall be sized based on the sum of the output ratings of the stand-alone sources.
Cont'd (C) Single 120-Volt Supply.
Stand-alone systems shall be permitted to supply 120 volts to single-phase, 3 -wire, $120 / 240$-volt service equipment or distribution panels where there are no 240 -volt outlets and where there are no multiwire branch circuits. In all installations, the sum of the ratings of the power sources shall be less than the rating of the neutral bus in the service equipment. This equipment shall be marked with the following words or equivalent:

WARNING:

SINGLE 120-VOLT SUPPLY. DO NOT CONNECT MULTIWIRE BRANCH CIRCUITS!
The warning sign(s) or label(s) shall comply with 110.21(B).
(D) Energy Storage or Backup Power System Requirements.

Energy storage or backup power supplies are not required.
(E) Back-Fed Circuit Breakers.

Plug-in type back-fed circuit breakers connected to an interconnected supply shall be secured in accordance with 408.36(D). Circuit breakers marked "line" and "load" shall not be back-fed.
(F) Voltage and Frequency Control.

The stand-alone supply shall be controlled so that voltage and frequency remain within suitable limits for the connected loads.

Motion Seq \# 70-38: Roger McDaniel, Georgia Power Company/ Southern Company

Motion Seq\#	Certified Amending Motion: Reject Second Revision No. 3627
70-38	Recommended Text if Motion Passes: Article 712 Direct Current Microgrids Part I. General 712.1 Scope. This article applies to direct current microgrids. 712.2 Definitions. Direct Current Microgrid (DC Microgrid). A direct current microgrid is a power distribution system consisting of one or more than one-interconnected dc power source s, stpplying_dc-dc converter $\underline{s}(s)$, dc load $\underline{s}(s)$, and 作 ac load $\underline{s}(s)$ powered by dc-ac inverter $\underline{s}(s)$. A dc microgrid is typically not directly connected to an ac primary source of electricity, but some dc microgrids interconnect via one or more dc-ac bidirectional converters or dc-ac inverters. Informational Note: Direct current power sources include ac-dc converters (rectifiers), bidirectional dc-ac inverters/converters, photovoltaic systems, wind generators, energy storage systems (including batteries), and fuel cells. Grounded Two-Wire DC System A two-wire dc power system that has a direct selid-connection or reference-ground between one of the current carrying conductors and the equipment grounding system. Grounded Three-Wire DC System. A dc power system with a solid connection or reference-ground between the center point of a bipolar dc power source and the equipment grounding system. Nominal Voltage. A nominal value assigned to a circuit or system for the purpose of conveniently designating its dc voltage class (e.g., 24 volts dc, $190 / 380$ volts dc, 380 volts dc) . Informational Note: The actual voltage at which a circuit operates can vary from the nominal voltage within a range that permits satisfactory operation of equipment. Reference-Grounded DC System. A microgrid system that is not solidly grounded but has a low- impedance resistance electrical reference that maintains voltage to ground in normal operation. In the faulted-state, the system becomes ungrounded or high-impedance grounded in order to limit fault current. Resistively Grounded. A dc power system with a high-impedance resistance connection between the current carrying conductors and the equipment grounding system. Primary DC Source. A de power source that supplies the majority of the de load in a de microgrid. Ungrounded DC System. A de power system that has no direct or resistive connection between the current carrying conductors and the equipment grounding system. 712.3 Other Articles. Wherever the requirements of other articles of this Code and Article 712 differ, the requirements of Article 712 shall apply. DC microgrids interconnected through an inverter or bi-directional converter with ac electric power production sources shall comply with Article 705 .

712.4 Labeling and Listing and Labeling .

Any direct-current equipment used in the de cireuits of a direct-current micro grid shall be listed or and labeled for dc use.
712.10 Directory.

A permanent directory denoting all dc electric power sources operating to supply the dc microgrid shall be installed at each source location capable of acting as the primary dc source.
Part II. Circuit Requirements
712.25 Identification of Circuit Conductors
(A)

Ungrounded circuit conductors in dc microgrids shall be identified according to the requirements of 210.5(C)(2) for branch circuits
and 215.12(C)(2) for feeders.
(B)

Ungrounded conductors of 6 AWG or smaller shall be permitted to be identified by polarity at all termination, connection, and splice points by marking tape, tagging, or other approved means.
712.30 System Voltage.

The system voltage of a dc microgrid shall be defined as follows determined by one of the following methods :

1. The nominal voltage to ground for solidly grounded systems
2. The nominal voltage to ground for reference-grounded systems where all conductors are disconnected from power sources when the reference ground is in the high-impedance, faulted state
3. The highest nominal voltage between conductors for resistively grounded dc systems and ungrounded dc systems.

Informational Note: Examples of nominal de system voltages include but are not limited to 24, 48, 125, 190/380, or 380 volts.
Part III. Disconnecting Means
712.34 DC Source Disconnecting Means.

The output of each dc source shall have a readily accessible, lockable disconnecting means that is lockable in the open position. Disconnecting means shall be located in accordance with $690.13(\mathrm{~A})$ for photovoltaic systems and adjacent to the source for other systems .
712.35 Disconnection of Ungrounded Conductors.

In solidly grounded two- and three-wire systems, the disconnecting means shall simultaneously open all ungrounded conductors. In ungrounded,
resistively grounded and reference-grounded systems, such devices shall open all current-carrying conductors.
712.37 Directional Current Devices.

Disconnecting means and protective and overcurrent devices that are designed shall be listed, be marked for use in a single current direction, shall and only be used in the designated current direction.
Informational Note: Examples of directional current devices are magnetically quenched contactors and semiconductor switches in overcurrent devices.
712.38 Loss of Direct Current Source.

Upon loss of primary dc source, all dc electric power sources shall be automatically disconnected from all ungrounded conductors of the dc primary source and shall not be reconnected until the primary dc source is restored. Individual premises dc sources shall be permitted to reconfigure and operate as the primary dc source in a stand-alone system(s) to supply loads that have been disconnected.

Part IV. Wiring Methods

712.40 Identification for Branch Circuits and Feeder Circuits.
(A)

Wiring methods for de microgrids shall comply with the requirements of 210.5 for branch circuits and 215.12 for feeders.
(B)

DC microgrids operating at voltages greater than 300 volts dc shall be reference-grounded de systems or resistively grounded dc systems.
712.52 System Grounding.
(A) Generat.

Direct-current microgrids shall be grounded in accordance with 250.162 .
(B) Over 300 Volts.

DC microgrids operating at voltages greater than 300 volts dc shall be reference-grounded dc systems or resistively grounded dc systems.
712.55 Ground Fault Protection of Detection Equipment.

Ungrounded, reference grounded, or resistively grounded-DC de microgrids operating at greater than 60 volts dc shall have ground
fault protection detection that does all of the following: Detects the fault Indicates indicates that a fault has occurred. For solidly grounded and reference-grounded systems, disconnects power from the faulted equipment Ground The ground fault equipment shall comply be marked in accordance-with 250.167(C) .
(A)

DC microgrids operating at greater than 60 volts dc shall have ground fault protection that does all of the following:

1. Detects the fault
2. Indicates that a fault has occurred
3. For solidly grounded and reference-grounded systems, disconnects power from the faulted equipment
(A)

Ground fault equipment shall comply with 250.167 .
712.57 Arc Fault Protection.

Where required elsewhere in this Code, specific systems within the_DC microgrid s with a system voltage of greater than 60 volts shall be required to have arc fault protection. for utilization circuits. Arc The are fault protection equipment shall be identified and listed for the purpose.
Informational Note: Section_90.4 applies when suitable equipment for arc fault protection is not available.
70-38
Part V. Marking
Cont'd 712.62 Panelboards Distribution Equipment_and Conductors .
Panelboards in dc microgrid systems shall be marked in accordance with 408.3 Distribution equipment and conductors shall be marked as required elsewhere in thisCode.
712.65 Panelboards.

Panelboards in dc microgrid systems shall be marked in accordance with 408.3 .
712.65 Available DC Fault Shert-Cireuit-Current.
(A) Field Marking.

Maximum The maximmm-available dc short-circuit current on the dc microgrid shall be field marked at the dc source (s). The field marking(s) shall include the date thefault- short-cireuitcurrent calculation was performed and be of sufficient durability to withstand the environment involved.
(B) Modifications.

When modifications to the electrical installation occur that affect the maximum available fault shert-cireuit current at the dc source, the maximum available fault short-cireuitcurrent shall be verified or recalculated as necessary to ensure the equipment ratings are sufficient for the maximum available fault short cireuit current at the line terminals of the equipment. The required field marking(s) in 712.65 (A) shall be adjusted to reflect indicate the new level of maximum available fault short-cireuitcurrentand date .
Part VI. Systems with Multiple Sources Protection
712.70 Overcurrent Protection.

Equipment and conductors connected to more than one electrical source shall have overcurrent protective devices located so as to provide protection from all sources.
712.72 Interrupting and Short-Circuit Current Ratings .

Consideration shall be given to the contribution of fault short-cireuit currents from all interconnected power sources for the interrupting ratings and short-circuit current ratings of equipment in the-dc microgrid system $\underline{s}(\underline{s})$. Overcurrent protective devices and equipment used within a dc microgrid
shall have an interrupting rating at nominal circuit voltage or a short-circuit current rating sufficient for the available fault shert-cireuit current at the line terminals of the equipment.
Part VII. Systems over 1000 Volts
712.80 General.

Systems with a maximum voltage between conductors of over 1000 volts dc shall comply with Article 490 and other requirements in this Code_ applicable to installations rated over 1000 volts.

Recommended Text if Motion Fails:

Article 712 Direct Current Microgrids
Part I. General
712.1 Scope.

This article applies to direct current microgrids.
712.2 Definitions.

Direct Current Microgrid (DC Microgrid).
A direct current microgrid is a power distribution system consisting of more than one interconnected dc power source, supplying dc-dc converter (s), dc load (s), and/or ac load (s) powered by dc-ac inverter (s). A dc microgrid is typically not directly connected to an ac primary source of electricity, but some de microgrids interconnect via one or more dc-ac bidirectional converters or dc-ac inverters.
Informational Note: Direct current power sources include ac-dc converters (rectifiers), bidirectional dc-ac inverters/converters, photovoltaic systems,
wind generators, energy storage systems (including batteries), and fuel cells.
Grounded Two-Wire DC System
A system that has a solid connection or reference-ground between one of the current carrying conductors and the equipment grounding system.
Grounded Three-Wire DC System.
A system with a solid connection or reference-ground between the center point of a bipolar dc power source and the equipment grounding system.
Nominal Voltage.
A value assigned to a circuit or system for the purpose of conveniently designating its dc voltage class .
Informational Note: The actual voltage at which a circuit operates can vary from the nominal voltage within a range that permits satisfactory operation of equipment.
Reference-Grounded DC System.
A system that is not solidly grounded but has a low- resistance electrical reference that maintains voltage to ground in normal operation. Resistively Grounded.
A system with a high- resistance connection between the current carrying conductors and the equipment grounding system.
Primary DC Source.
A source that supplies the majority of the de load in a dc microgrid.
Ungrounded DC System.
A system that has no direct or resistive connection between the current carrying conductors and the equipment grounding system.

712.3 Other Articles.

Wherever the requirements of other articles of this Code and Article 712 differ, the requirements of Article 712 shall apply. DC microgrids interconnected through an inverter or bi-directional converter with ac electric power production sources shall comply with Article 705 .
712.4 Listing and Labeling .

Any equipment used in the dc circuits of a direct-current micro grid shall be listed and labeled for dc use.
712.10 Directory.

A permanent directory denoting all dc electric power sources operating to supply the de microgrid shall be installed at each source location capable of acting as the primary dc source.
Part II. Circuit Requirements
712.25 Identification of Circuit Conductors
(A)

Ungrounded circuit conductors in de microgrids shall be identified according to the requirements of 210.5(C)(2) for branch circuits and 215.12(C)(2) for feeders.
(B)

Ungrounded conductors of 6 AWG or smaller shall be permitted to be identified by polarity at all termination, connection, and splice points by marking tape, tagging, or other approved means.
712.30 System Voltage.

The system voltage of a dc microgrid shall be determined by one of the following methods :

1. The nominal voltage to ground for solidly grounded systems
2. The nominal voltage to ground for reference-grounded systems
3. The highest nominal voltage between conductors for resistively grounded dc systems and ungrounded dc systems.

Informational Note: Examples of nominal dc system voltages include but are not limited to 24,48 , 125, 190/380, or 380 volts.
Part III. Disconnecting Means
712.34 DC Source Disconnecting Means.

The output of each dc source shall have a readily accessible, disconnecting means that is lockable in the open position and adjacent to the source .
712.35 Disconnection of Ungrounded Conductors.

In solidly grounded two- and three-wire systems, the disconnecting means shall simultaneously open all ungrounded conductors. In ungrounded, resistively grounded and reference-grounded systems, such devices shall open all current-carrying conductors.
712.37 Directional Current Devices.

Disconnecting means shall be listed, be marked for use in a single current direction, and only be used in the designated current direction.
Informational Note: Examples of directional current devices are magnetically quenched contactors and semiconductor switches in overcurrent devices.
Part IV. Wiring Methods
712.52 System Grounding.
(A) General.

Direct-current microgrids shall be grounded in accordance with 250.162 .
(B) Over 300 Volts.

DC microgrids operating at voltages greater than 300 volts dc shall be reference-grounded dc systems or resistively grounded dc systems.
712.55 Ground Fault Detection Equipment.

Ungrounded, reference grounded, or resistively grounded dc microgrids operating at greater than 60 volts dc shall have ground
fault detection that indicates that a fault has occurred. The ground fault equipment shall be marked in accordance with 250.167(C) .
712.57 Arc Fault Protection.

Where required elsewhere in this Code, specific systems within the DC microgrid shall have arc fault protection. The arc fault protection equipment shall be listed.
Informational Note: Section 90.4 applies when suitable equipment for arc fault protection is not available.
Part V. Marking
712.62 Distribution Equipment and Conductors .

Distribution equipment and conductors shall be marked as required elsewhere in this Code .
712.65 Available DC Short-Circuit Current.
(A) Field Marking.

The maximum available dc short-circuit current on the dc microgrid shall be field marked at the dc source (s). The field marking(s) shall include the date the short-circuit current calculation was performed and be of sufficient durability to withstand the environment involved.
(B) Modifications.

When modifications to the electrical installation occur that affect the maximum available short-circuit current at the dc source, the maximum available short-circuit current shall be verified or recalculated as necessary to ensure the equipment ratings are sufficient for the maximum available short-circuit current at the line terminals of the equipment. The required field marking(s) in $712.65(\mathrm{~A})$ shall indicate the new maximum available short-circuit current and date .
Part VI. Protection
712.70 Overcurrent Protection.

Equipment and conductors connected to more than one electrical source shall have overcurrent protective devices to provide protection from all sources.
712.72 Interrupting and Short-Circuit Current Ratings

Consideration shall be given to the contribution of short-circuit currents from all interconnected power sources for the interrupting ratings and shortcircuit current ratings of equipment in the dc microgrid system (s). Overcurrent protective devices and equipment used within a dc microgrid shall have an interrupting rating at nominal circuit voltage or a short-circuit current rating sufficient for the available short-circuit current at the line terminals of the equipment.
Part VII. Systems over 1000 Volts
712.80 General.

Systems with a maximum voltage between conductors of over 1000 volts dc shall comply with Article 490 and other requirements in this Code applicable to installations rated over 1000 volts.

Informational Note 2: An example of a limited power (LP) cable is a cable marked Type CL2 LP(0.5 A), 23 AWG. A Type CL2 LP(0.5), 23 AWG could be used in any location where a Type CL2 could be used; however, the LP cable would be suitable for carrying up to 0.5 A per conductor, regardless of the number of cables in a bundle. If used in a 7 cable bundle, the same cable could carry up to 1.2 amperes per conductor.
(1) Cables with the suffix "LP" shall be permitted to be installed in bundles, raceways, cable trays, communications raceways, and cable routing assemblies.
(2) Cables with the suffix "LP" and a marked ampere level shall follow the substitution hierarehy of Table 725.154 and Figure $725.154(\mathrm{~A})$ for the cable type without the suffix "LP" and without the marked ampere level.
(3) System design shall be permitted by qualified persons under engineering supervision.

Recommended Text if Motion Fails:

725.144 Transmission of Power and Data.

The requirements of $725.144(\mathrm{~A})$ and (B) shall apply to Class 2 and Class 3 circuits that transmit power and data to a powered device. The requirements of Parts I and III of Article 725 and 300.11 shall apply to Class 2 and Class 3 circuits that transmit power and data. The conductors that carry power for the data circuits shall be copper. The current in the power circuit shall not exceed the current limitation of the connectors.
Informational No. 1: One example of the use of cables that transmit power and data is the connection of closed-circuit TV cameras (CCTV). Informational Note No. 2: The 8P8C connector is in widespread use with powered communications systems. These connectors are typically rated at 1.3 amperes maximum.
Table 725.144 Ampacities of Each Conductor in Amperes in 4-Pair Class 2 or Class 3 Data Cables Based on Copper Conductors at an Ambient Temperature of $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$ with all All Conductors in All Cables Carrying Current, $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right), 75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$, and $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$ Rated Cables

AWG	Number of 4-Pair Cables in a Bundle																				
	1			2-7			8-19			20-37			38-61			62-91			92-192		
	Temperature Rating			Temperature Rating			Temperature Rating			Temperature Rating			Temperature Rating			Temperature Rating			Temperature Rating		
	$\underline{60}{ }^{\circ} \mathrm{C}$	$\underline{75}{ }^{\circ} \mathrm{C}$	$\underline{90}{ }^{\circ} \mathrm{C}$	$\underline{60}{ }^{\circ} \mathrm{C}$	$\underline{75}{ }^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$\underline{75}{ }^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	$\underline{60}{ }^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$\underline{75}$	$90^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$
$\underline{\underline{26}}$	1	1	1	1	1	1	0.7	$\underline{0.8}$	1	0.5	$\underline{0.6}$	$\underline{0.7}$	0.4	$\underline{0.5}$	$\underline{0.6}$	0.4	$\underline{0.5}$	$\underline{0.6}$	NA	NA	NA
$\underline{\underline{24}}$	2	$\underline{2}$	$\underline{2}$	1	1.4	1.6	0.8	1	1.1	0.6	0.7	0.9	0.5	0.6	$\underline{0.7}$	0.4	0.5	0.6	0.3	0.4	$\underline{0.5}$
$\underline{\underline{23}}$	2.5	$\underline{2.5}$	$\underline{2.5}$	1.2	1.5	1.7	0.8	1.1	1.2	0.6	$\underline{0.8}$	$\underline{0.9}$	0.5	$\underline{0.7}$	$\underline{0.8}$	0.5	$\underline{0.7}$	$\underline{0.8}$	0.4	$\underline{0.5}$	$\underline{0.6}$
$\underline{\underline{22}}$	3	$\underline{3}$	$\underline{3}$	1.4	1.8	2.1	1	1.2	1.4	0.7	$\underline{0.9}$	1.1	0.6	$\underline{0.8}$	$\underline{0.9}$	0.6	$\underline{0.8}$	$\underline{0.9}$	0.5	$\underline{0.6}$	$\underline{0.7}$

Note 1: For bundle sizes over 192 cables, or for conductor sizes smaller than 26 AWG, ampacities shall be permitted to be determined by qualified personnel under engineering supervision.
Note 2: Where only half of the conductors in each cable are carrying current, the values in the table shall be permitted to be increased by a factor of 1.4.
Informational Note: The conductor sizes in data cables in wide-spread use are typically 22-26 AWG.
(A) Use of Class 2 or Class 3 Cables to Transmit Power and Data.
(1) Where Types CL3P, CL2P, CL3R, CL2R, CL3, or CL2 transmit power and data, the following shall apply, as applicable:

The ampacity ratings in Table 725.144 shall apply at an ambient temperature of $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$.
(2) For ambient temperatures above $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$, the correction factors of $310.15(\mathrm{~B})(2)$ shall apply.

Informational Note: One example of the use of Class 2 cables is a network of closed- circuit TV cameras using $24 \mathrm{AWG}, 60^{\circ} \mathrm{C}$ rated, Type CL2R, Category 5e local area network (LAN) cables.
(B) Use of Class 2-LP or Class 3-LP Cables to Transmit Power and Data.

Types CL3P-LP, CL2P-LP, CL3R-LP, CL2R-LP, CL3-LP, or CL2-LP shall be permitted to supply power to equipment at a current level up to the marked ampere limit located immediately following the suffix LP and shall be permitted to transmit data to the equipment. The Class 2-LP and Class 3-LP cables shall comply with the following, as applicable:
Informational Note 1: The "(xxA)" following the suffix -LP indicates the ampacity of each conductor in a cable.
Informational Note 2: An example of a limited power (LP) cable is a cable marked Type CL2-LP(0.5A), 23 AWG. A Type CL2-LP(0.5), 23 AWG could be used in any location where a Type CL2 could be used; however, the LP cable would be suitable for carrying up to 0.5 A per conductor, regardless of the number of cables in a bundle. If used in a 7 -cable bundle, the same cable could carry up to 1.2 amperes per conductor.
(1) Cables with the suffix "-LP" shall be permitted to be installed in bundles, raceways, cable trays, communications raceways, and cable routing assemblies.
(2) Cables with the suffix "-LP" and a marked ampere level shall follow the substitution hierarchy of Table 725.154 and Figure 725.154(A) for the cable type without the suffix "LP" and without the marked ampere level.
(3) System design shall be permitted by qualified persons under engineering supervision.

Motion Seq\#	Certified Amending Motion: Reject an Identifiable Part of Second Revision No. 615
70-40	Recommended Text if Motion Passes: 725.179 Listing and Marking of Class 2, Class 3, and Type PLTC Cables.... (I) Limited Power (LP) Cables. Limited power (LP) cables shall be listed as suitable for carrying power and data circuits up to a specified current limit for each conductor without exceeding the temperature rating of the cable where the cable is installed in cable bundles in free air or installed within a raceway, cable tray, or cable routing assembly. The cables shall be marked with the suffix "LP" with the ampere limit located immediately following the suffix LP, where the eurrent limit is in amperes per conductor. Informational Note: The ampere limit located immediately following the suffix $L P$ is the ampacity of each conductor in a cable. For example, 1 ampere Class 2 limited power cables would be marked CL2 LP (1.0A), CL2R LP (1.0A), or CL2 LP (1.0A).
	Recommended Text if Motion Fails: 725.179 Listing and Marking of Class 2, Class 3, and Type PLTC Cables.... (I) Limited Power (LP) Cables. Limited power (LP) cables shall be listed as suitable for carrying power and data circuits up to a specified current limit for each conductor without exceeding the temperature rating of the cable where the cable is installed in cable bundles in free air or installed within a raceway, cable tray, or cable routing assembly. The cables shall be marked with the suffix "-LP" with the ampere limit located immediately following the suffix LP, where the current limit is in amperes per conductor. Informational Note: The ampere limit located immediately following the suffix LP is the ampacity of each conductor in a cable. For example, 1 ampere Class 2 limited-power cables would be marked CL2-LP (1.0A), CL2R-LP (1.0A), or CL2-LP (1.0A).

$\begin{array}{\|c} \text { Motion } \\ \text { Seq\# } \end{array}$	Certified Amending Motion: Accept Public Comment No. 73
70-41	Recommended Text if Motion Passes: 770.24 Mechanical Execution of Work. Optical fiber cables shall be installed in a neat and workmanlike manner. Cables installed exposed on the surface of ceilings and sidewalls shall be supported by the building structure in such a manner that the cable will not be damaged by normal building use. Such cables shall be secured by hardware, including straps, staples, cable ties, hangers, or similar fittings designed and installed so as not to damage the cable. The installation shall also conform to $300.4(\mathrm{D})$ and 300.11 . Nonmetalic cable ties and other nonmetallic cable accessories used to secure and support cables in other spaces used for environmental air (plenums) shall be listed as having low smoke and heat release properties in accordance with 800.170(C). Informational Note No. 1: Accepted industry practices are described in ANSI/NECA/BICSI 568-2006, Standard for Installing Commercial Building Telecommunications Cabling; ANSI/NECA/FOA 301-2015, Standard for Installing and Testing Fiber Optic Cables; and other ANSI-approved installation standards. Informational Note No. 2: See 4.3.11.2.6.5 and 4.3.11.5.5.6 of NFPA 90A-2015, Standard for the Installation of Air-Conditioning and Ventilating Systems, for discrete combustible components installed in accordance with 300.22(C). Informational Note No. 3: Paint, plaster, cleaners, abrasives, corrosive residues, or other contaminants may result in an undetermined alteration of optical fiber cable properties."
	Recommended Text if Motion Fails: 770.24 Mechanical Execution of Work. Optical fiber cables shall be installed in a neat and workmanlike manner. Cables installed exposed on the surface of ceilings and sidewalls shall be supported by the building structure in such a manner that the cable will not be damaged by normal building use. Such cables shall be secured by hardware including straps, staples, cable ties, hangers, or similar fittings designed and installed so as not to damage the cable. The installation shall also conform with 300.4(D) through (G) and 300.11. Nonmetallic cable ties and other nonmetallic cable accessories used to secure and support cables in other spaces used for environmental air (plenums) shall be listed as having low smoke and heat release properties Informational Note No. 1: Accepted industry practices are described in ANSI/NECA/BICSI 568-2006, Standard for Installing Commercial Building Telecommunications Cabling; ANSI/NECA/FOA 301-2009, Standard for Installing and Testing Fiber Optic Cables; and other ANSI-approved installation standards. Informational Note No. 2: See 4.3.11.2.6.5 and 4.3.11.5.5.6 of NFPA 90A-2015, Standard for the Installation of Air-Conditioning and Ventilating Systems, for discrete combustible components installed in accordance with 300.22(C).

Motion Seq \# 70-42: Joel Goergen, Cisco Systems, Inc.

Motion Seq\#	Certified Amending Motion: Accept an Identifiable Part of Public Comment No. 1262
	Recommended Text if Motion Passes: 840.160 Powering Circuits. Communications cables, in addition to carrying the communications circuit, shall also be permitted to carry circuits for powering communications equipment. Where the power supplied over a communications cable to communications equipment is greater than 60 watts 0.5 A per conductor or greater than 100 watts, communication cables and the power circuit shall comply with 725.144 where communications cables are used in place of Class 2 and Class 3 cables. $70-42$
Cables and Equipment Marking Supplying Premises Power and Communications. Powering circuits supplying more than 0.5 A per conductor or greater than 100 watts per cable must be clearly labeled on the equipment face plate in maximum watts per port.	
	Recommended Text if Motion Fails: 840.160 Powering Circuits. Communications cables, in addition to carrying the communications circuit, shall also be permitted to carry circuits for powering communications equipment. Where the power supplied over a communications cable to communications equipment is greater than 60 watts, communication cables and the power circuit shall comply with 725.144 where communications cables are used in place of Class 2 and Class 3 cables.

Motion Seq \# 70-43: Jeff Silveira, BICSI; Tony Obrien, Cisco Systems

Motion Seq\#	Certified Amending Motion: Reject Second Revision No. 4564, Including any Related Portions of First Revisions and First Correlating Revisions
	Recommended Text if Motion Passes: Part VI. Premises Powering of Communications Equipment over Communications Cables 840.160 Powering Cireuits. Commmications cables, in addition to carrying the commmications circuit, shall also be permitted to carry circuits for powering commmications equipment. Where the power supplied over a communications cable to commmications equipment is greater than 60 watts, commmication cables and the power circuit shall comply with 725.144 where commmications cables are used in place of Class 2 and Class 3 cables.
70-43	Recommended Text if Motion Fails: Part VI. Premises Powering of Communications Equipment over Communications Cables 840.160 Powering Circuits. Communications cables, in addition to carrying the communications circuit, shall also be permitted to carry circuits for powering communications equipment. Where the power supplied over a communications cable to communications equipment is greater than 60 watts, communication cables and the power circuit shall comply with 725.144 where communications cables are used in place of Class 2 and Class 3 cables.

Table A

NITMAMs not certified for the June 2016 NFPA Technical Meeting (Tech Session)

NFPA 70, National Electrical Code

NITMAM Log \#	Section/Para	Submitter of the Motion	Motion	Motions Committee Notes and Comments
87	230.70 (A)	Dean Weigand, Briggs and Stratton	Reject an Identifiable Part of Second Revision No. 1004	
104	240.67	Eric Maier, Boltswitch Inc.	The submitter seeks to add text that was not included in the related Second Revision. Public Comment No. 290	The submitter seeks to add text that was not included in the related Public Comment.
109	240.67	James Erickson, Boltswitch Inc.	Accept an Identifiable Part of Public Comment No. 608	The submitter seeks to add text that was not included in the related Public Comment.
110	240.67	James Erickson, Boltswitch Inc.	Accept an Identifiable Part of Public Comment No. 1635	The submitter seeks to add text that was not included in the related Public Comment.
7	240.100	Paul Guidry, Fluor Enterprises Inc.	Accept Public Comment No. 235	The submitter proposed no text nor text amendments.
29	$310.15(B)$	Travis Lindsey, TLC Services Inc.	Accept an Identifiable Part of Public Comment No. 583	The submitter seeks to accept a Public Comment that he did not submit.

100 (1) ADDITIONS. The follow- ing are department definitions in addition to the definitions in NEC 100
(a) "Department" means the department of safety and profes- sional services.
(a) ""epartment" means the department of safety and profes-
(c) "Nonrated construction" means Types III, IV and V con- struction in accordance with chs. SPS 361 to 366 and is considered to b nonfire-rated for the purposes of this chapter,
(d) "Private sewage system" has the meaning specified under s. 145.01 (12), Stats

Note: Under s. 145.01 (12), Stats., "private sewage system" means a sewage treat- ment and disposal system serving a single
structure with a septic tank and soil absorp- tion field structure with a septic tank and soil absorp- tion field located on the same parcel as the structure. This term also means an alterna
tive sewage system approved by the department including a substitute for the septic tank or soil absorption field, a holding tank, a system serving more than one structure or a system located on a different parcel than the structure. A private sewage system may ee owned by the property owner or a special purpose district.
(2) SUBSTITUTIONS. The following department definitions are substitutions for the respective definitions in NEC 100
a) "Building" means a structure that stands alone or is sepa- rated from adjoining structures by fire walls having not less than a Note: See chs. SPS 361 to 366 for fire-resistance standards tected with 3 -hour rated fire door assemblies
(b) "Special permission" means a petition for variance in accordance with s. SPS 316.005

History: CR 08-047: cr. Register February 2009 No. 638, eff. 3-1-09; correction
(1) (a), (b), (c), (2) (b) made under s. 13.92 (4) (b) 6., 7., Stats., Register December

110 Requirements for electrical installa- tion. Substitute the following wording for the requirements in NEC 110.3 (B): Listed or labeled equipment shall be installed or used, or both, in accordance with any instructions included in the listing or labeling, provided the History: CR 08-047; cr Ring do not conflict with this chapter.
3-042: am. Register N. Register February 2009 No. 638, eff. 3-1-09; CR

10 Branch circuits. (1) IDENTIFICATION FOR
BRANCH CIRCUITS. This is a department informational note to be used under NEC 210.5 (C
Note: For $277 / 480$ volt systems, the recommended wire colors are brown, orange and yellow. For $120 / 208$ volt systems, the rec mmended wire colors are black, red and blue. equirements in NEC 210.8 (A)
 sewage pumps where an accessible ground-fauit circuit-inter- rupter protected receplacie is located within 100 mm (3) of the
on- FFCI proteced receptacle.
(3) BRANC CIRCUITS REQUIRED. This is a department rule in addition to the requirements of NEC 210.11: Where an air con ssible ioner sleeve is provided in a building wall, a receptacle outlet shall be located within 4 feet of the sleeve. If a circuit is not run to the outlet, a raceway shall be provided. When the air condi- tioner is installed in the sleeve, it shall be supplied by an individual branch dircuit. A receptacle outiet installed for an air conditioner may not be counted as one of the receptacles required by NEC 10.52 (A).
4) BRANCH CIRCUIT EXTENSIONS OR MODIFICATIONS - DWELL- ING UNITS. The requirements in NEC 210.12 (B) are not ncluded as part of this chapter
(5) LIGHTING OUTLETS REQUIRED. Substitute the following wording for NEC 210.70 (A) (1): At least one wall switch-con- trolled 6) COUNTFRTOP RECEPTACLES
0.210

Sustitute the following: "(2) GROUND-FAULT CIRCUIT-INTERRUPTER PROTECTION FOR PERSONNEL 10.8 (A) and (B)

Exception: Ground-fault circuit-interrupter protection shall no be required for a single receptacle providing power for sump or sewage pumps where an accessible ground-fault

$$
\text { Circuit-inter- rupter protected receptacle is located within } 900
$$

$$
\begin{aligned}
& \text { circuit--Itier- -upper protecced receptacie is locate } \\
& \mathrm{mm}(3 \mathrm{ft}) \text { of the non- } \mathrm{GFCl} \text { protected receptacle. }
\end{aligned}
$$

space with a long dimension of 2 ft or greater, and a short
dimension of 1 ft or more, measured from the connected
peninsular wall. A wall countertop space receptacle can serve
as the receptacle for a peninsular countertop space where the
spaces are contiguous and the receptacle is within 6 ft of the
outside edge of the peninsular countertop. "

220 Branch-circuit, feeder and service calculations. (1) GENERAL. This is a department exception to the requirements in NEC 220.10: Delete SPS 316.220 sub (1)
2) EXCEPTION. This is a department exception to the require- ments in NEC 220.40:
Exception: Under the supervision of a Wisconsin professional engineer, architect or designer of electrical systems, the feeder or
service size may be computed using diversity factors or historical data of a similar type of building, other than one- and 2 -family
dwelling units.
History: CR 08-047: cr. Register February 2009 No. 638, eff. 3-1-09; CR
13-042: r. and recr. (1) Register November 2013 No. 695, eff. 12-1-13.
. 225 Outside branch circuits and feeders
(1) CLEARANCES FROM BUILDINGS FOR CONDUCTORS NOT OVER 600 VOLTS. Substitute the following wording for NEC 22.19 (A) Exception No. 4: The requirem
to the final conductor span to the building
(2) NUMBER OF SUPPLIES. The following are department rules in addition to the requirements in NEC 225.30
(a) For the purpose of this section, multiple feeders that are supplied from the same distribution point, having a total rating of 300 amperes or more, and that supply not more than 6 disconnect- ing means grouped at the same location shall be considered as one supply. second building or structure's respective occupied space.
(3) LOCATION. This is a department rule in addition to the r. 225.31 shall be located in accordance with s. SPS 316.230 (3)

Note: See ch. PSC 114 regarding clearances of conductors of over 600 volts and for prohibition of constructing dwellings under near overhead lines. note to NEC 225.60 (C):
Note: For clearances of conductors of over 600 volts, see ch. PSC 114.
$\begin{array}{ll} & \begin{array}{l}\text { (6) CLEARANCES OVER BUILDINGS AND OTHER STRUC }\end{array} \\ 0.230 & \text { Services. (1) NUMBER OF SERVICES. (a) } \\ \text { These are department informational notes to be used under NEC }\end{array}$
These are dep
230.2 (intro.):
Note: See definition of building in s. SPS 316.100 (2) (a).
Note: It is recommended that the electric utility or cooperative supplying electric current be contacted prior to service equipment (b) Substitute the following wording for NEC 2302 (B) (2): Two or more service drops or laterals for the same class of service if located more than 150 feet apart, measured in a straight line, and provided that all electrical wiring supplied by each service has common raceway or connection with any other service.
(c) This is a department rule in adatition to the requirements of NEC 230.2 (B): For a building which is not more than 3 stories in eight and which contains only 3 or more attached, vertically separated,
permitted for each 2 attached units.
(2) NUMBER OF SERVICE-ENTRANCE CONDUCTOR SETS. The requirements specified in NEC 230.40 Exception No. 3 are not
included as part of this chapter.
(3) SERVICE EQUIPMENT - DISCONNECTING MEANS. (a) Gen- eral. This is a department rule in addition to the requirements (3) SERVICE EQUIPMENT - DISCONNECTING MEAN. (a) Gen- eral. This is a department rule in addition to the requirements
of NEC 230.70: Disconnecting means shall be provided to discon-nect the utility wiring from the premises wiring at any point wher utility wiring terminates and premises wiring extends overhead or underground to more than one building or structure.
(b) Location. This is a department rule in addition to the requirements of NEC 230.70 (A): Raceways containing service conductors

250 Grounding and bonding. (1) SUPPLE-
MENTAL ELECTRODE REQUIRED. The exception in NEC 250.53 (A)
(2) is not included as part of this chapter.
(2) SUPPLEMENTAL ELECTRODE This
(, pipe or plate shall be augmented by one additional electrode of any of the types in NEC 250.52 (A) (4) to
Wiring methods. (1) ELECTRICAL REQUIREMENTS FOR PRIVATE SEWAGE SYSTEMS. These department
ules apply to private sewage systems and are in addition to the requirements of NEC 300:
a) Wiring methods. All effluent pump circuit wiring shall comply with the approved wiring methods as specified in NEC 300 and all Effillowing requirements:
. Lluent pumps shall be supplied by a separate branch cir-cuit supplying no other loads.
2. Alarm wiring may not be connected to the pump circuit.

All aboveground cables and flexible cords shall be enclosed to protect against physical damage.
4. The neutral conductor may not be common to both alarm and pump circuits.
5. Where the wiring enclosure for the alarm and pump circuit is located outside
. Where the wiring encirsure for be coller or plugged to prevent the passage of gas or vapor inter, any openings into the pump .

310

(B) (3) (a): The derating factors shown in NEC Table 310.15 (B)

B) (a) do not apply to branch circuits supplying an individua
310.15 (B) (3) (a) do not apply to branch circuits supplying an individual dwelling unit except under the following conditions:
(1) Where more than two NM cables containing two or more current-carrying conductors are installed, without maintaining spacing
between the cables, through the same opening in wood framing that is to be fire- or draft-stopped using thermal insula- tion, caulk etween the cables, through the same opening in wood framing that is to be fire- or draft-stopped using thermal insula- tion, caulk or sealing foam, the allowable ampacity of each con- duct
(a) and the provisions of 310.15 (A) (2) shall not apply.
2) Where more than two NM cables containing two or
nsulation without maintaining spacing between cables, the allowabt-carrying conductors are installed in contact with thermal with Table 310.15 (B) (3) (a)
13-042: am. (title), (intro.) Register Nobuary 2009 No. 638 , eff. 3-1-09; CR
12-1-13; correc-
0.312 Cabine han 12 inches and not more than 10 feet in length, provided all of the following conditions are met:
2) OMISSION. The requirements specified in NEC 312.5 (C) Exception paragraph (b) are not included as part of this chapter 3) FITTING. Substitute the following wording for NEC 312.5
C) Exception paragraph (c): A fitting is provided on each end of the raceway to protect the cable from abrasion

History: CR 08-047: cr. Register February 2009 No. 638, eff. 3-1-09.

Delete SPS 316.225 (1)

Delete this: "(c) This is a department rule in addition to the eeleet his. (C) NEC is adeparmen rule in addition to the more than 3 stories in height and which contains only 3 or more attached, vertically separated, side-by-side or back-to-back dwelling units, with each dwelling unit served by grade a separate service drop or lateral shall be pernitted for each 2 attached units."

Revise to read: "(a) Two- or multi-family dwellings. Except as provided in par. (b), for 2-family or multi-family dwellings, the service equip- ment shall have a total rating of not less than
50 amperes, 3 -wire or 4 -wire."
elete SPS 316.230 (4) (b) exception
c-

Substitute the following for SPS 316.300 (2) protection agains physicall damage.
Delete first sentence, add new exception \#4 to read "NEC 300.4 (D) Exception No. 4 This distance does not need to be
maintained within 8 inches of a device, junction box, splice or mermination point."

Substitute the following for SPS 316.310 "Conductors for general wiring. This is a department exception to the equirements in NEC 310.15 (B) (2) and (3): The ampacity
adjustment factors shown in NEC Table 310.15 (B) (3) (a) do adjustment factors shown in NEC Table 310.15 (B) (3) (a) do
not apply to branch circuits associated with an individual welling unit except under the following conditions: (1) Where more than two NM cables containing two or more
current-carrying conductors are installed, withou current-carrying conductors are installed, without maintaining spacing between the cables, through the same opening in
wood framing that is to be fire- or draft-stoped using the insula- tion, caulk or sealing foam, the allowable ampacity of each con- ductor shall be adjusted in accordance with Table 310.15 (B) (3) (a) and the provisions of 310.15 (A) (2) shall no apply.

Similar to existing NEC 225.19(a) exception 4

Definition of building defaults to the building codes.

Determination of buildings is defined by the building codes.
ly application of the rule.

Covered by other code requirements.

Align Wisconsin installation requirements with other states.

Editorial. NEC $310.15(\mathrm{~B})(2)$ and (3) has been revised. The exceptions have been written as positive statements consistent
with the NEC manual of style. In other words, NEC $310.15(B)(2)$ with the NEC manual of style. In other words, NEC $310.15(\mathrm{~B})(2)$ (
and (3) currently have no Exceptions $1-5$.
0.314 Outlet, device, pull and junction boxes; conduit bodies; fittings; and handhole enclosu- res. (1) CONDUCTORS ENTERING BOXES, CONDUIT BODIES, OR FIT BOXES, COND a department exception to the requirements of NEC
314.17 (B) and (C):

Exception: Nonmetallic sheathed cable is not required to be secured to the box or conduit body where it is installed in accord- ance with the wiring method specified in s. SPS 316.312
2) OUTLET BOXES. This is a department rule in addition to the requirements of NEC 314.27 (A): In a dwelling unit, a ceiling outet box installed for use as a lighting fixture outlet in a habitable room or kitchen and located where a ceiling fan could be installed History: CR 08-047: cr. Register February 2
n (1) made under s. 13.92 (4) (b) 7., Stats., Register December 2011 No. 672; CR
13-042: am. (title) Register November 2013 No. 695, eff. 12-1-13
0.334
(3): Other strucautes cable: Types NM, NMC and NMS. (1) USES PERMITTED. Substitute the fol- lowing wording for NEC 334.10 (3): Other structures permitted to be of Types IIII, IV, and V construction except as spohibitied in NEC 334.12
2) TYPES NM, NMC, AND NMS. The requirements specified in NEC 334.12 (A) (2) are not included as part of this chapter

1istory: CR 08-047: cr. Register February 2009 No. 638 , eff. 3-1-09; CR
13-042: am. (2) (title) Register November 2013 No. 695, eff. 12-1-13.
0.358

Uses permitted. This is a department rule in addition to the requirements of NEC 358.12: Electrical metallic tubing may not be used tistory: CR 08-047: cr. Register February 2009 No. 638 eff. 3-1-09.
0.400

Exception No. 2: Flexible cords and cables permitted by NEC
aces provided the type of cord or cable, the attachment to the building attached to adequately supported equipment or building sur-
of NEC 368.56 (B).
History: CR 08-047: cr. Register February 2009 No. 638, eff. 3-1-09;
History: CR 08-047: cr. Register February 2009 No. 638, eff. 3-1-09
13-042: am. (title) Register November 2013 No. 695, eff. 12-1-13.
0.406 Receptacles, cord connectors and attachment plugs (caps). The requirements in NEC 406.4 (D)
4) are not included as part of this chapter.
istory: CR 08-047: cr. Register February 2009 No. 638, eff. 3-1-09; CR
13-042. Register Novembe 2013 No 695, eff 12-1-13.
0.450

Transformers and transformer vaults (including secondary ties). (1) OVERCURRENT PROTECTION. This is a department rule in addition to the requirements in NEC Table 450.3 (A) Note 3: The qualified person shall be either an employee at that location or an mployee contracted for this pur- pose who is readily available.
(2) LOCATION. Substitute the following wording for NEC 450.41: Vaults containing oirinsulated transformers shall be located History: CR 88 cont be ventilated to the outside air with- out using flues or ducts, except where a petition for variance is approved. History. CR. (fitle) (1) Re42 No

511
Commercial garages, repair and sto- rage. (1) The requirements specified in NEC 511.3 (C) (1) (a) are not included as part of this hapter.
2) Substitute the following wording for NEC 511.3 (C) (2) (a): The ceiling area shall be unclassified where ventilation is pro- vided rom a point not more than 18 inches from the highest point in the ceiling. The ventilation shall conform to chapters SPS 361 to 366
Note: The Commercial Building Code, chapters SPS 361 to 366 , adopts and refer- ences the International Mechanical Code, IMC, or the design of ventilation systems. The adopted provisions of the International Mechanical Code under section 502.16 prescribe provisions for repair garages for natural gas- and hydrogen- fueled vehicles
R.547 Thistory: CR 08-047: cr. Register February 2009 No. 638 , eff. $3-1-09$; CR

Exception: Ground-fault circuit-interrupter protection is not required for a single receptacle providing power for an electric fence controller used for livestock containment where an accessi- ble ground-fault circuit-interrupter protected receptacle is located within 900 mm (3 3 ft) of the non-GFCI protected recep- tacle.
History: CR 13-042: cr. Register November 2013 No. 695, eff. 12-1-13.
0.620

Elevators, dumbwaiters, escalators, moving walks, platform lifts and stairway chairlifts. (1) This is a department exception to the equirements in NEC 620 :Exception: Wherever NEC 620 requires disconnecting means with overcurrent protection to be located in directly accessible from a building floor level, such devices shall be located instead in lockable cabinets or electrical rooms
accessible only to qualified persons.
(2) This is a department informational note to be used under NEC 620.25

Note: See NEC $620.53,620.54$ and 620.55 for additional require- ments.
History: CR $08-047 \cdot$ cr Recister February 2009 No. 638 eff $3-1-09$. CR

