

SPS 340.60 Liquefied Natural Gas Systems (LNG) Checklist Vehicular Fuel Gas Systems Code NFPA 52 – 2010 DISPENSING

Owner:		City;	State/zip		
Location:		Contact Phone:		Cell:	
Tank Manufacturers		Tank (Capacity	Year Built	
Vessel Marking:	NB No	Serial No	MAWP	QTY	

Code Section					
Code Section	Item Description Applies to design etc. of equipment used for the storage and dispensing of LNG and	Std Para.			
12.1.1					
10.1.0	L/CNG as engine fuel for vehicles of all types.				
12.1.2	Dispensing of LNG shall comply with a permanent LNG refueling installation				
12.2.1.1 – 12.2.1.2	Tamper protection for unattended facilities, storage & transfer equipment				
12.2.1.3	Operating Instructions conspicuously posted				
12.2.1.4	Lighting for night operations				
12.2.1.7 – 12.2.1.8	Sites dispensing saturated LNG barrier requirements for personnel and operator				
12.2.2.1 – 12.2.2.2	Sitting not below overhead 600 volt electric lines; vaulted or UG OK				
12.2.2.3	Protection from other combustibles to be provided if present				
12.2.2.4	Fired equipment to be located IAW table 12.2.2.4				
12.2.2.5 – 12.2.2.6	Setbacks for Point of transfer not less than 25 ft. (includes max length of hose)				
12.2.3.1 – 12.2.3.5.2	Spill containment and site prep of impoundment areas				
12.2.3.6 – 12.2.3.8.3	Impounding containment design and drainage	_			
12.2.4.1.1 – 12.2.4.1.2	Bldgs. Exclusive to LNG fueling to be type I or II windows & doors permit egress				
12.2.4.2.1 – 12.2.4.2.2	Deflagration venting location and type				
12.2.4.2.3 – 12.2.4.2.6	Ventilation means, monitors, system shut down, ventilation rates				
12.2.4.3	Reactivation of auto shut down shall be by manual means				
12.2.4.4 – 12.2.4.4.2	Gas detection system location, alarms, operation				
12.2.4.5 – 12.2.4.6	Dispensing Equip. in or attached to bldgs for other purpose, access & fire doors				
12.2.4.7 – 12.2.4.8	"NO-SMOKING" - signage and location of piping shutoff valves outside of bldg.				
12.2.4.9	Bldgs and/or rooms for storage or dispensing electrical class per table 12.2.2.4				
12.3.1 – 12.3.2	Cargo transport unload to fueling facility				
12.3.3 – 12.3.6	Isolation valves, backflow prevention, status indicator, personnel, ignition source				
12.3.7.1 – 12.3.7.2	Methane detection and fire protection				
12.3.8.1 – 12.3.12	Transport bleed connections, wheel chocks, engine off, setback from container				
12.4.1 – 12.4.3	Dispensing device damage protection, ESD and ESD actuator location				
12.4.4	Max delivery pressure ≤ MAWP of vehicle tank				
12.4.5 – 12.4.6	Hose arms require shut-off and break-away at fuel end, & secured when not in use				
12.4.7 – 12.4.7.2	Hose or arms \geq 3" liq. or 4" vapor ESV with in 10'; 2 or more legs ESV in each leg				
12.4.8.1 – 12.4.8.2	Loading arms &hose bleed or vents and discharge location				
12.4.9 – 12.4.10	Fueling connector to be safe & reliable and have interlock or self-closing ends				
12.4.11	Transfer to onboard vehicle per OEM instructions and shall be posted at dispenser				
12.4.12 – 12.4.13	AHJ approval required for equip. spacing; and for exemption from Section 12.4				
12.5	Piping and components to comply with Chapter 16				
12.6.1 – 12.6.3	PRV install to reduce damage to piping, sealed, stationary tank PRV per CGAS-1.3				
12.6.4 – 12.6.4.2	Thermal expansion relief valve requirements				
12.7.1 – 12.7.3	UG and Submerged piping corrosion control				
12.8.1 – 12.8.7	Stationary pumps and compressor requirements				
12.9.1 – 12.9.8	Vaporizer requirements				
12.10.1 - 12.10.12	LNG-to-CNG (L/CNG) system requirements				
12.11.1 – 12.11.3.2	Instrumentation, Press. gauge; temp. monitor, and emerg. shut down device (ESV)				
12.12.1 – 12.12.8	Electrical IAW NFPA 70				
12.13.1 – 12.13.1.1	Maintenance program per OEM include test & inspection conducted at least 6 mos				
12.13.1.2 – 12.13.1.3	Refueling site maint. program or safety analysis kept for duration of sites operation				
12.13.3 – 12.13.4.1	Safety device out of service for maintenance Signage and follow 29 CFR 1910				
12.13.5 – 12.13.6	Free of rubbish & debris for 25' grass areas maintained not to present a hazard				
Code Section	Item Description	Std Para.			
12.13.7 – 12.13.9	Test, inspection, scheduling of safety and fire equip. access routes for fire equip.				

Chapter 15 LNG Fire Protection					
15.2.1.1 – 15.2.1.2	Fire protection determine by analysis and guidance factors as listed				
15.2.2 – 15.2.3	Coordinated with Emergency Response agencies cover potential conditions				
15.2.4	Equipment and methane detection maintained				
15.3.1 – 15.3.5	Ignition source control; no smoking, welding, cutting, vehicle restrictions				
15.4.1 – 15.4.5	Personnel safety and training				
15.5.1 – 15.5.2	Facility security, procedures and posting				
15.6 – 15.7	Hazard detection; Parking of LNG vehicles at or in facilities				
15.8	Warning sign requirements type, lettering not less than 6", and color				
	Chapter 16 LNG installation Requirements for ASME Tanks for LNG				
	Yellow highlights are from chapter 13 of NFPA 59-A				
16.1 – 16.2	Applies to containers < 70,000 wgc unattended facilities secured against tampering				
16.3.1 – 16.3.2	All piping as part of Tank complies with ASME Sec VIII or ASME B31.3 & on U-1				
16.3.3 – 16.3.4	Inner & outer tank internal piping design = MAWP of inner tank; no bellows				
16.3.5 – 16.3.12	Containers to be double walled insulated. Inner to be welded ASME/NB registered				
16.3.13 -16.3.13.2	Vessel PRV requirements				
16.3.14	Thermal barrier preventing outer tank temp below design				
16.3.15 – 16.3.15.2	Seismic considerations; applies to tanks reinstalled built prior to 7/1/1996				
16.3.16 – 16.3.18	Mfg. nameplate requirements, vessel opening labeled, legible under all conditions				
16.4.1 – 16.4.2	Container foundations and supports and flooding precautions				
16.5.1 – 16.5.6	Container installation, separation distances, UG need corrosion protection				
16.6.1 – 16.6.4	Product retention valves				
16.7.1 – 16.7.2	Container inspection responsibilities				
16.8.1 – 16.8.2	Testing and purging of LNG containers				
16.8.3 – 16.8.3.2	Repairs field welding saddle plates/brackets only. Other repairs to original code only				
16.8.4	Containers placed in or out of service to be purged and inerted				
16.9.1	All container and associated facility piping to comply with ASME B31.3				
16.9.2	Type F, spiral welded, furnace butt welded products shall not be used				
16.9.3 – 16.9.4	All welding to comply with ASME IX, Oxy-fuel gas welding not allowed				
16.9.5	Brazing filler must exceed 1000 ⁰ F				
16.9.6 – 16.9.7	All pipe & tubing to be austenitic S/S below -20°F and min. melting of 1500°F				
16.9.8	Compression cplngs. Not to be used below -20 ⁰ F unless comply 318 of B31.3				
16.9.9	Stab in pipe connections not allowed				
16.9.10	Extended bonnet valves to be used for cryo-service and not more than 45 ⁰ of vertical				
16.9.11	Level of piping inspection to be specified				
16.10.1	Instrumentation design so if power or control air fails system goes to failsafe				
16.10.2	LNG containers to be equipped with 2 independent L/L devices 1 dip tube and 2 nd a				
1000	continuous indication from full to empty				
16.10.3.1	Container to have pressure gauge at point above max liquid level				
16.10.3.2	Vacuum jacketed vessels shall have means to check annular space				
16.11.1	Safety valves o be provide in compliance with AME BPVC				
16.11.1.1 – 16.11.1.2	PRV communicate with vapor space and be sized per NPA 59-A 7.9.5 or CGA S-1.3				
16.11.2	Each pressure & vacuum PRV shall be able to be isolated by full opening stop valves				
16.11.2.1	The stop valve shall be lockable or sealable in full open				
16.11.2.2	Sufficient valves to be installed to provide capacity maintenance or service valves				
16.11.2.3	1 PRV required a full port opening 3-way valve with spare PRV or a valve under				
16 11 3	each PRV shall be installed Stop valves under individual PRV s shall be leeked or sealed open				
16.11.3 16.11.4	Stop valves under individual PRV,s shall be locked or sealed open				
16.11.4	PRV stacks designed to prevent dirt, debris, water etc. discharge to atmos. To be vertical				
NFPA-30A Chap 12	This chapter shall apply when LNG is dispensed as motor vehicle fuel along with				
WFFA-50A Chap 12	Class I or Class II flammable liquids.				
4.3.72	NFPA 30A 4.3.7.2 Guard Posts or other approved means				
7.5.12	112 12 0012 10011 Guard 1 05ts of other approved means				